(Toán 8) Định lí Talet

N

nhuquynhdat

Kéo dài AG cắt BC tại E

Kẻ $BM//A'C', CN//A'C' (M, N \in AE)$

Xét $\Delta ABM$ có $BM//GC' \Longrightarrow \dfrac{BM}{GC'}=\dfrac{AM}{AG}$

$CN//GA' \Longrightarrow \dfrac{CN}{GA'}=\dfrac{EN}{EG}=\dfrac{2EN}{AG}$

$CN//GB \Longrightarrow \dfrac{CN}{GB'}=\dfrac{AN}{AG}$

CM: $\Delta BME=\Delta CNE(g-c-g) \Longrightarrow BM=CN; EN=EM$

$\Longrightarrow \dfrac{CN}{GA'}+\dfrac{CN}{GB'}=\dfrac{2EN}{AG}+ \dfrac{AN}{AG}=\dfrac{2EN+AN}{AG}=\dfrac{AM}{AG}$

$\Longrightarrow \dfrac{CN}{GA'}+\dfrac{CN}{GB'}= \dfrac{BM}{GC'}$

$\Longrightarrow \dfrac{1}{GA'}+\dfrac{1}{GB'}= \dfrac{1}{GC'}$
 
D

deadguy

4bc23e.png

Đóng góp cái hình
 
Top Bottom