[Toán 8]CMR: $\dfrac{AM}{BN}$ = $\dfrac{AI}{BI}^2$

H

hoailinhminho

Last edited by a moderator:
C

congchuaanhsang

a,b Dễ rồi

c, $\Delta$AMI ~ $\Delta$INB

\Rightarrow$AM.NB=MI.IN=IM^2$

\Leftrightarrow $AM.NB=CM^2-CI^2=CM.CN-CI^2$

$=(CA-AM)(CB-BN)-CI^2$

$=CA.CB-AM.BC-CA.BN+AM.BN-CI^2$

\Leftrightarrow $CA.CB=AM.NB+AM.BC+CA.BN-AM.BN+CI^2$

\Leftrightarrow $CA.CB.BA=AM.BC.AB+CA.BN.AB+CI^2.AB=BC.AI^2+CA.BI^2+AB.CI^2$
 
Top Bottom