[Toán 8] Chứng minh

I

iceghost

1)
Ta có : $\dfrac{a}{b}=\dfrac{c}{d}$
$\iff ad=bc \\
\implies 3ac+ad=3ac+bc \\
\iff a(3c+d)=c(3a+b) \\
\iff \dfrac{a}{3a+b}=\dfrac{c}{3c+d}$

2)
Ta có : $\dfrac{a}{b}=\dfrac{c}{d}$
$\implies \dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{a^2+c^2}{b^2+d^2} \; (1)$
Lại có : $\dfrac{a}{b}=\dfrac{c}{d}$
Nhân cả hai vế cho $\dfrac{a}{b}$ ta được
$\dfrac{a}{b}=\dfrac{c}{d} \\
\iff \dfrac{a^2}{b^2}=\dfrac{ac}{bd} \; (2)$
Từ (1),(2) $\implies \dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}$
 
Top Bottom