[toán 8] chứng minh

T

tiendat102

Vì [TEX]x+y+z=0 [/TEX]
[TEX]\Rightarrow x+y=-z \Rightarrow (x+y)^5=-z^5 [/TEX]

hay [TEX]x^5+y^5+5(x^4y+xy^4+2x^3y^2+2x^2y^3+)=-z^5[/TEX]

[TEX]\Leftrightarrow x^5+y^5+z^5+5xy(x^3+y^3+2x^2y+2x^2y)=0[/TEX]

[TEX]\Leftrightarrow x5+y^5+z^5+5xy(x+y)(x^2-xy+y^2+2xy)=0[/TEX]

[TEX]\Leftrightarrow x^5+y^5+z^5-5xyz(x^2+xy+y^2)=0[/TEX]

[TEX]\Leftrightarrow x^5+y^5+z^5=5xyz(x^2+xy+y^2)[/TEX]

[TEX]\Leftrightarrow 2(x^5+y^5+z^5)=5xyz(2x^2+2xy+2y^2)[/TEX]

[TEX]\Leftrightarrow 2(x^5+y^5+z^5)=5xyz[x^2+y^2+(x+y)^2][/TEX]

[TEX]\Leftrightarrow 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)[/TEX]
 
Last edited by a moderator:
Top Bottom