[Toán 8] Chứng minh rằng

T

thaolovely1412

Ta có:
[TEX]A=(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b})(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a})[/TEX]
[TEX]=1+\frac{a(a-b)}{c(b-c)}+\frac{b(a-b)}{c(c-a)}+1+\frac{c(b-c)}{a(a-b)}+\frac{b(b-c)}{a(c-a)}+1+\frac{c(c-a)}{b(a-b)}+\frac{a(c-a)}{b(b-c)}[/TEX]
[TEX]=3+(\frac{a(a-b)}{c(b-c)}+\frac{c(b-c)}{a(a-b)})+(\frac{b(a-b)}{c(c-a)}+\frac{c(c-a)}{b(a-b)})+(\frac{a(c-a)}{b(b-c)}+\frac{b(b-c)}{a(c-a)})[/TEX]
Áp dụng BĐT:[TEX] \frac{a}{b}+\frac{b}{a} \geq 2[/TEX] ta được
[TEX]\frac{a(a-b)}{c(b-c)}+\frac{c(b-c)}{a(a-b)} \geq 2[/TEX]
[TEX]\frac{b(a-b)}{c(c-a)}+\frac{c(c-a)}{b(a-b)} \geq 2[/TEX]
[TEX]\frac{a(c-a)}{b(b-c)}+\frac{b(b-c)}{a(c-a)} \geq 2[/TEX]
Do đó:[TEX] A \geq 3+2+2+2=9[/TEX]
 
R

ronaldover7

Ta có:
[TEX]A=(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b})(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a})[/TEX]
[TEX]=1+\frac{a(a-b)}{c(b-c)}+\frac{b(a-b)}{c(c-a)}+1+\frac{c(b-c)}{a(a-b)}+\frac{b(b-c)}{a(c-a)}+1+\frac{c(c-a)}{b(a-b)}+\frac{a(c-a)}{b(b-c)}[/TEX]
[TEX]=3+(\frac{a(a-b)}{c(b-c)}+\frac{c(b-c)}{a(a-b)})+(\frac{b(a-b)}{c(c-a)}+\frac{c(c-a)}{b(a-b)})+(\frac{a(c-a)}{b(b-c)}+\frac{b(b-c)}{a(c-a)})[/TEX]
Áp dụng BĐT:[TEX] \frac{a}{b}+\frac{b}{a} \geq 2[/TEX] ta được
[TEX]\frac{a(a-b)}{c(b-c)}+\frac{c(b-c)}{a(a-b)} \geq 2[/TEX]
[TEX]\frac{b(a-b)}{c(c-a)}+\frac{c(c-a)}{b(a-b)} \geq 2[/TEX]
[TEX]\frac{a(c-a)}{b(b-c)}+\frac{b(b-c)}{a(c-a)} \geq 2[/TEX]
Do đó:[TEX] A \geq 3+2+2+2=9[/TEX]

Mấy cái khúc a-b,b-c,c-a chắc gì lớn hơn 0 mà Cauchy ____________________nó kêu CM =0 mà!!!!!!!!!!Chưa áp dụng a+b+c=0!.
 
Last edited by a moderator:
M

me0kh0ang2000

$(\dfrac{a-b}{c}+\dfrac{b-c}{a}+ \dfrac{c-a}{b}).\dfrac{c}{a-b}=1+\dfrac{c}{a-b}.\dfrac{b^2-bc+ac-a^2}{ab}=1+\dfrac{c}{a-b}.\dfrac{(a-b)(c-a-b)}{ab}=1+\dfrac{2c^2}{ab}=1+\dfrac{2c^3}{abc}$

Tương tự:

$(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}).\dfrac{a}{b-c}=1+\dfrac{2a^3}{abc}\\
(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}).\dfrac{b}{c-a}=1+\dfrac{2b^3}{abc}$

Xét hiệu: $a^3+b^3+c^3-3abc=(a+b)^3+c^3-3a^2b-3ab^2-3abc=(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)=0 \Rightarrow a^3+b^3+c^3=3abc$

Do đó: $(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}).(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}=3+\dfrac{2(a^3+b^3+c^3)}{abc}=3+\dfrac{2.3abc}{abc}=9$
 
Top Bottom