[Toán 8]Chứng minh rằng

V

vipboycodon

Ta có : $a^3+b^3+c^3 = 3abc $
<=> $a^3+b^3+c^3-3abc = 0$
<=> $(a+b+c)(a^2+b^2+c^2-ab-bc-ac) = 0$
<=> $\left[\begin{matrix} a+b+c = 0 \\ a^2+b^2+c^2-ab-ac-bc = 0 \end{matrix}\right. $
* Với $a+b+c = 0$ ta có :
$A = (1+\dfrac{a}{b})(1+\dfrac{b}{c})(1+\dfrac{c}{a})$
$= \dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{a+c}{a}$
$= \dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}$
$= -1$
* Với $a^2+b^2+c^2-ab-ac-bc = 0 $
<=> $2a^2+2b^2+2c^2-2ab-2ac-2bc = 0$
<=> $(a-b)^2+(a-c)^2+(b-c)^2 = 0$
=> $a = b = c$
$A = \dfrac{a+b}{c}.\dfrac{b+c}{c}.\dfrac{a+c}{a} = \dfrac{2b}{b}.\dfrac{2c}{c}.\dfrac{2a}{a} = 8$
Xin lỗi nha , làm hơi tắt.:p
 
Top Bottom