[toán 8] c/m bất đẳng thức

T

trinhminh18

Ta có:
$\dfrac{1}{x+1}=2-\dfrac{1}{y+1}-\dfrac{1}{z+1}=\dfrac{y}{y+1}+\dfrac{z}{z+1}$>2$\sqrt{\dfrac{yz}{(y+1)(z+1)}}$
tương tự có:
$\dfrac{1}{y+1}$>2$\sqrt{\dfrac{xz}{(x+1)(z+1)}}$
$\dfrac{1}{z+1}$>2$\sqrt{\dfrac{xy}{(x+1)(y+1)}}$
\Rightarrow$\dfrac{1}{x+1}.\dfrac{1}{y+1}.\dfrac{1}{z+1}$>$\dfrac{8xyz}{(x+1)(y+1)(z+1)}$
\Leftrightarrow1> 8xyz
\Rightarrowđpcm
 
Top Bottom