[Toán 8] BT toán

S

sangbinbin_1999

a^4+ b^4 - a^3b-ab^3 \geq 0
\Leftrightarrow a^3(a-b)-b^3(a-b)
\Leftrightarrow (a^3-b^3) (a-b)
\Leftrightarrow (a-b)^2 (a^2+ab+b^2)
mà (a^2 +ab+b^2 ) > 0
(a-b)^2 \geq 0
\Rightarrow (a-b)^2 (a^2+ab+b^2) \geq 0 (Đúng)
vay a^4 + b^4 \geq a^3b+ab^3
 
B

braga

[TEX]b, \ 2(a^2+b^2)=(a^2+b^2)(1^2+1^2) \geq (a.1+b.1)^2=(a+b)^2=1 \Rightarrow a^2+b^2 \geq \frac{1}{2} ( Theo \ BDT \ Bunyakovsky) [/TEX]
 
Top Bottom