a) $x^8+x+1 \\
= x^8 + x^7 + x^6 - x^7 - x^6 - x^5 + x^5 + x^4 + x^3 - x^4 - x^3 - x^2 + x^2 + x + 1 \\
= x^6(x^2+x+1) - x^5(x^2+x+1) + x^3(x^2+x+1) - x^2(x^2+x+1) + (x^2+x+1) \\
= (x^2+x+1)(x^6-x^5+x^3-x^2+1)$
b) $x^7+x^5+1 \\
= x^7 + x^6 + x^5 - x^6 - x^5 - x^4 + x^5 + x^4 + x^3 - x^3 - x^2 - x + x^2 + x + 1 \\
= x^5(x^2+x+1) - x^4(x^2+x+1) + x^3(x^2+x+1) - x(x^2+x+1) + (x^2+x+1) \\
= (x^2+x+1)(x^5-x^4+x^3-x+1)$
c) $(2x^2 - 4)^2 + 9 \\
= [(2x^2 + 5) - 9]^2 + 9 \\
= (2x^2+5)^2 - 18(2x^2+5) + 81 + 9 \\
= (2x^2+5)^2 - 36x^2 - 90 + 90 \\
= (2x^2+5)^2 - 36x^2 \\
= (2x^2+6x+5)(2x^2-6x+5)$