[Toán 8] biểu thức đại số

C

chonhoi110

Chắc đề đúng là vầy :D
$A=(\dfrac{(x−1)^2}{3x+(x−1)^2}-\dfrac{1−2x^2+4x}{x^3−1}+\dfrac{1}{x−1}): \dfrac{x^2+x}{x^3+x}$
Giải:
a) ĐKXĐ: $x \not= \, \pm \; 1; x \not= \, 0$
b) $A=(\dfrac{(x−1)^2}{3x+(x−1)^2}-\dfrac{1−2x^2+4x}{x^3−1}+\dfrac{1}{x−1}): \dfrac{x^2+x}{x^3+x}$
$=(\dfrac{x^2-2x+1}{x^2+x+1}+\dfrac{2x^2-4x-1}{(x−1)(x^2+x+1)}+\dfrac{1}{x−1}): \dfrac{x^2+x}{x^3+x}$

$=(\dfrac{(x^2-2x+1)(x-1)}{(x^2+x+1)(x-1)}+\dfrac{(2x^2-4x-1)}{(x−1)(x^2+x+1)}+\dfrac{(x^2+x+1)}{(x−1)(x^2+x+1)}): \dfrac{x^2+x}{x^3+x}$

$=(\dfrac{x^3-3x^2+3x-1+2x^2-4x-1+x^2+x+1}{(x^2+x+1)(x-1)}): \dfrac{x^2+x}{x^3+x}$

$=(\dfrac{x^3-1}{(x^2+x+1)(x-1)}). \dfrac{x^3+x}{x^2+x}$

$=(\dfrac{(x-1)(x^2+x+1)}{(x^2+x+1)(x-1)}). \dfrac{x(x^2+1)}{x(x+1)}$

$=\dfrac{x^2+1}{x+1}$

c) $\dfrac{x^2+1}{x+1}=x-1+\dfrac{2}{x+1}$
$ \rightarrow x \in \;$ { $0; -2;1;-3$}
Kết hợp với ĐKXĐ $\rightarrow x= -2; -3$ thì A nguyên
 
Top Bottom