[Toán 8]Bài tập nâng cao

N

nguyenhoitavan

Last edited by a moderator:
N

nguyenbahiep1

Câu 3.
Cho nửa đường tròn tâm O, đường kính AB. Từ điểm M trên nửa đường tròn (M A; M B) vẽ tiếp tuyến xy. Kẻ AD vuông góc xy và BC vuông góc xy.
a) Chứng minh: MC = MD.
b) Chứng minh tổng AD + BC có giá trị không phụ thuộc vị trí điểm M trên nửa đường tròn.
c) Chứng minh đường tròn đường kính CD tiếp xúc với AB.
d) Xác định vị trí điểm M để tứ giác ABCD có diện tích lớn nhất.


câu a

tứ giác ADCB là hình thang vuông tại C và D

OM // DA và CB , O là trung điểm AB nên MO là đường trung bình của hình thang ADCB .
vậy M là trung điểm CD

câu b

theo công thức đường trung bình

DA+CB = 2MO = 2R


câu c từ M kẻ MK vuông AB tại K chứng minh

MC = MD = MK

vậy đường tròn tâm M đường kính DC tiếp xúc Với AB tại O

câu

S = (AD+CB).DC = 2R.DC = 4R.MK

MK lớn nhất khi K trùng O

hay M là trung điểm của cung AB
 
Top Bottom