Toán 7

Q

quynhphamdq

B= $\frac{a}{a+b+c}$ + $\frac{b}{a+b+d}$ + $\frac{c}{b+c+d}$ + $\frac{d}{a+c+d}$
Ta có :
$\frac{a}{a+b+c} < \frac{a+d}{a+b+c+d}$
$\frac{b}{a+b+d}< \frac{b+c}{a+b+c+d}$
$\frac{c}{b+c+d} < \frac{c+a}{a+b+c+d}$
$\frac{d}{a+c+d} < \frac{d+b}{a+b+c+d}$
\Rightarrow
B= $\frac{a}{a+b+c}$ + $\frac{b}{a+b+d}$ + $\frac{c}{b+c+d}$ + $\frac{d}{a+c+d}$< $\frac{a+d}{a+b+c+d}+\frac{b+c}{a+b+c+d}+\frac{c+a}{a+b+c+d}+\frac{d+b}{a+b+c+d}$
\Rightarrow
$B< \frac{2(a+b+c+d)}{a+b+c+d}$ \Rightarrow $B<2$(1)
Ta lại có :
$\frac{a}{a+b+c} > \frac{a}{a+b+c+d}$
$\frac{b}{a+b+d}> \frac{b}{a+b+c+d}$
$\frac{c}{b+c+d} > \frac{c}{a+b+c+d}$
$\frac{d}{a+c+d} > \frac{d}{a+b+c+d}$
\Rightarrow
B= $\frac{a}{a+b+c}$ + $\frac{b}{a+b+d}$ + $\frac{c}{b+c+d}$ + $\frac{d}{a+c+d} > \frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}$
\Rightarrow $B> \frac{a+b+c+d}{a+b+c+d}$ \Rightarrow $B>1$(2)
Từ (1) vá (2) ta suy ra :
1<B<2
\Rightarrow B ko phải là số tự nhiên (ĐPCM)
 
Last edited by a moderator:
Top Bottom