[Toán 7]Toán khó

R

rayquazapkm

chứng minh rằng
[TEX] \frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+ \frac{1}{49.50} = \frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}[/TEX]

=>[TEX]1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}[/TEX]

Tớ mới nghĩ được thế này thui, có gì mong anh em giúp đỡ
 
Last edited by a moderator:
H

hoangoanh2

Mình có cách khác này:D:D:D
Đặt :[TEX]A= \frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+ \frac{1}{49.50}[/TEX]
dễ thấy: [TEX]A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+ \frac{1}{49}-\frac{1}{50}[/TEX]
do đó: [TEX]A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{49}+\frac{1}{50} - 2(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{50})[/TEX]
[TEX]A= 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}-(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{24}+\frac{1}{25}[/TEX]
[TEX]A=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}[/TEX] (dpcm)
 
Last edited by a moderator:
Top Bottom