\[\begin{array}{l}
Cach\,\,khac:\\
M = \frac{3}{2} + \frac{{13}}{{12}} + \frac{{31}}{{30}} + ... + \frac{{9901}}{{9900}}\\
= 50 + \frac{1}{2} + \frac{1}{{12}} + \frac{1}{{30}} + ... + \frac{1}{{9900}}\\
N = 50 - (\frac{1}{2}.3 + \frac{1}{4}.5 + \frac{1}{6}.7 + ... + \frac{1}{{100}}.101)\\
= 50 - (\frac{3}{2} + \frac{5}{4} + \frac{7}{6} + ... + \frac{{101}}{{100}})\\
= 50 - \frac{3}{2} - \frac{5}{4} - \frac{7}{6} - ... - \frac{{101}}{{100}}\\
M - N = (50 + \frac{1}{2} + \frac{1}{{12}} + \frac{1}{{30}} + ... + \frac{1}{{9900}}) - (50 - \frac{3}{2} - \frac{5}{4} - \frac{7}{6} - ... - \frac{{101}}{{100}})\\
{\rm{ = }}50 + \frac{1}{2} + \frac{1}{{12}} + \frac{1}{{30}} + ... + \frac{1}{{9900}} - 50 + \frac{3}{2} + \frac{5}{4} + \frac{7}{6} + ... + \frac{{101}}{{100}}\\
= \frac{1}{2} + \frac{1}{{12}} + \frac{1}{{30}} + ... + \frac{1}{{9900}} + \frac{3}{2} + \frac{5}{4} + \frac{7}{6} + ... + \frac{{101}}{{100}}\\
= \frac{1}{2} + \frac{3}{2} + \frac{1}{{12}} + \frac{5}{4} + \frac{1}{{30}} + \frac{7}{6} + ... + \frac{1}{{9900}} + \frac{{101}}{{100}}\\
= \frac{1}{{1.2}} + \frac{3}{2} + \frac{1}{{3.4}} + \frac{5}{4} + \frac{1}{{5.6}} + \frac{7}{6} + ... + \frac{1}{{99.100}} + \frac{{101}}{{100}}\\
Lai\,\,co:\,\,\frac{1}{{n(n + 1)}} + \frac{{n + 2}}{{n + 1}} = \frac{1}{{n(n + 1)}} + \frac{{n(n + 2)}}{{n(n + 1)}} = \frac{{n(n + 2) + 1}}{{n(n + 1)}} = \frac{{{n^2} + 2n + 1}}{{n(n + 1)}} = \frac{{{{(n + 1)}^2}}}{{n(n + 1)}} = \frac{{n + 1}}{n}\\
= > M - N = 2 + \frac{4}{3} + \frac{6}{5} + ... + \frac{{100}}{{99}}\\
= 51 + \frac{1}{3} + \frac{1}{5} + ... + \frac{1}{{99}}\\
\end{array}\]