[Toán 7] Tính diện tích tam giác

T

tayhd20022001

Bài làm.

Tam giac ABC có BC=10cm, đường cao AH=8cm,I la trung điểm AH, O la trung điểm BC. Tính diện tích tam giac AIO và tam giac IOC.
Giải
Bạn tự vẽ hình:
Ta có biết O là trung điểm của BC
=>BC=CO=10:2=5(cm)
=>Ta có I là trung điểm AH
=>AI=IH=8:2=4(cm)
a)Vậy tam giác AOI là:
(4.5):2=10(cm).
b)Tam giác OIC là:
(4.5):2=10(cm)
Xong!...

@thinhrost1: chú ý diện tích là phải đơn vị $cm^2$ nhé :D
 
Last edited by a moderator:
2

23121999chien

Tam giac ABC có BC=10cm, đường cao AH=8cm,I la trung điểm AH, O la trung điểm BC. Tính diện tích tam giac AIO và tam giac IOC.
Giải
Bạn tự vẽ hình:
Ta có biết O là trung điểm của BC
=>BC=CO=10:2=5(cm)
=>Ta có I là trung điểm AH
=>AI=IH=8:2=4(cm)
a)Vậy tam giác AOI là:
(4.5):2=10(cm).
b)Tam giác OIC là:
(4.5):2=10(cm)
Xong!...

@thinhrost1: chú ý diện tích là phải đơn vị $cm^2$ nhé :D
Bài này tayhd20022001 xem lại nhé!Sai rồi!
Giải
Ta có AI=IH=$\dfrac{8}{2}$=4 cm
Ta có tiếp:BO=OC=$\dfrac{10}{2}$=5 cm
Xét trong tam giác IOC có đường cao IH hạ từ đỉnh H và có cạnh đáy là OC=5 cm
Vậy diện tích tam giác IOC là:
(5.4):2=10($cm^2$)
Phần này thì bạn giải đúng còn phần sau thì sai!Vì tại sao diện tích tam giác AIO=(4.5):2 được=>Cái này sai!
 
2

23121999chien

Tam giac ABC có BC=10cm, đường cao AH=8cm,I la trung điểm AH, O la trung điểm BC. Tính diện tích tam giac AIO và tam giac IOC.
Mình nghĩ bài này phải thêm điều kiện rằng AB=AO(hoặc gì đó dể tạo gợi ý)
Giải
Ta có AI=IH=$\dfrac{8}{2}$=4 cm
Ta có tiếp:BO=OC=$\dfrac{10}{2}$=5 cm
Xét trong tam giác IOC có đường cao IH hạ từ đỉnh H và có cạnh đáy là OC=5 cm
Vậy diện tích tam giác IOC là:
(5.4):2=10($cm^2$)
-Tam giác cân ABO mà AH là đường cao kẻ từ A =>AH là trung trực của BO.
=>BH=HO
Mà BH+HO=5cm =>BH=2,5 cm
=>Diện tích tam giác AHO là:
(8.2,5)>2=10($cm^2$)
Mà Tam giác AIO và tam giác IHO có chung đường cao và có tỉ lệ cạnh đáy là $\dfrac{1}{2}$ với nhau
=>Diện tích tam giác AOI=$\dfrac{1}{2}$ Diện tích AHo mà diện tích tam giác AHO=10 $cm^2$
=>Diện tích tam giác AOI=5 $cm^2$.
Đáp số...
 
G

goodangel

Tam giac ABC có BC=10cm, đường cao AH=8cm,I la trung điểm AH, O la trung điểm BC. Tính diện tích tam giac AIO và tam giac IOC.
Mình nghĩ bài này phải thêm điều kiện rằng AB=AO(hoặc gì đó dể tạo gợi ý)
Giải
Ta có AI=IH=$\dfrac{8}{2}$=4 cm
Ta có tiếp:BO=OC=$\dfrac{10}{2}$=5 cm
Xét trong tam giác IOC có đường cao IH hạ từ đỉnh H và có cạnh đáy là OC=5 cm
Vậy diện tích tam giác IOC là:
(5.4):2=10($cm^2$)
-Tam giác cân ABO mà AH là đường cao kẻ từ A =>AH là trung trực của BO.
=>BH=HO
Mà BH+HO=5cm =>BH=2,5 cm
=>Diện tích tam giác AHO là:
(8.2,5)>2=10($cm^2$)
Mà Tam giác AIO và tam giác IHO có chung đường cao và có tỉ lệ cạnh đáy là $\dfrac{1}{2}$ với nhau
=>Diện tích tam giác AOI=$\dfrac{1}{2}$ Diện tích AHo mà diện tích tam giác AHO=10 $cm^2$
=>Diện tích tam giác AOI=5 $cm^2$.
Đáp số...
nhưng bạn ơi bài này không cho diều kiện nao cả...Khó là chỗ tính tam giac AOI đó
 
2

23121999chien

Mình sẽ giải bài này bằng kiến thức lớp 7.(Không cần có điều kiện gì) nhé!
Giải
-Ta có AI=IH=$\dfrac{8}{2}$=4 cm
Ta có tiếp:BO=OC=$\dfrac{10}{2}$=5 cm
Xét trong tam giác IOC có đường cao IH hạ từ đỉnh H và có cạnh đáy là OC=5 cm
Vậy diện tích tam giác IOC là:
(5.4):2=10($cm^2$)
-th1 : (HO lớn hơn BH) Phần tính diện tích tam giác AIO ta dựa vào bất đẳng thức của tam giác để tính cạnh.
Xét trong tam giác AHO vuông tại H mà AH là đường vuông góc và bằng 8=>AO>8(Vì là đường xiên)
Và vận dụng bất đẳng thức tam giác đó=>AH+HO>AO
Mà HO,AH khác 0=>AH+HO lớn nhất là 12 và bé nhất là 9
=>Ta có:8<x<12=>x=11,10,9
Thử thay x=11,10,9 vào tam giác vuông AHO(áp dụng định lý pytago)=>Chỉ có 9 là phù hợp vì HO<5.
=>x=9
=>HO=$\sqrt{17}$
=>Diện tích tam giác AHO=($\sqrt{17}$.8):2=16,5(sấp sỉ)($cm^2$)
mà diện tích tam giác AIO=$\dfrac{1}{2}$ diện tích tam giác AOH (Do chung đường cao và đáy tam giác AHo gấp đôi đáy tam giác AIO)
=>Diện tích tam giác AIO=16,5:2=8,25($cm^2$)
Thử lại xem các cạnh của tam giác AIO có giống như điều kiện ở trên không dựa vào cách tính diện tích tam giác thì đúng BO=5cm và đúng với các điều kiện trên.
Tương tự ta tính đến th 2 khi: (BH>HO)
Nhưng trong phần này thêm mottj bước nữa là tính diện tích tam giác AHB rồi mới đến tính đến diện tích tam giác AHO sau đó mới tìm được diện tích tam giác AIO
Và lần này kết quả lại khác do có hai th đó là: Diện tích tam giác AIO=1,75($cm^2$)
Nhưng 2 th đều luôn đúng với các điều kiện đã cho vậy diện tích tam giác AIO có 2 kết quả là 8,25($cm^2$) và 1,75($cm^2$)(Đều sấp sỉ).
 
Last edited by a moderator:
Top Bottom