[Toán 7] Nâng cao

Z

zidokid

P

pinkylun

Bài 1:

$\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}$

$=>(a^2+b^2)cd=(c^2+d^2)ab$

$<=>a^2cd+b^2cd=c^2ab+d^2ab$

$<=>a^2cd-d^2ab=c^2ab-b^2cd$

$<=>ad(ac+bd)=bc(ac+bd)$

$<=>ad=bc$

$<=>\dfrac{a}{b}=\dfrac{c}{d}$ (đpcm)
 
I

iceghost

Làm nốt bài cuối vậy :D

$\dfrac{bz-cy}{a}= \dfrac{cx-az}{b} = \dfrac{ay-bx}{c}$
$\implies$ $\dfrac{abz-acy}{a^2}= \dfrac{bcx-abz}{b^2} = \dfrac{acy-bcx}{c}$
Áp dụng tình chất dãy tỉ số bằng nhau có :
$\dfrac{abz-acy}{a^2}= \dfrac{bcx-abz}{b^2} = \dfrac{acy-bcx}{c^2} = \dfrac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}= \dfrac{0}{a^2+b^2+c^2} = 0$

$+ \dfrac{bz-cy}{a}=0 \implies bz-cy=0 \implies bz=cy \iff \dfrac{y}{b}=\dfrac{z}{c} \\
+ \dfrac{cx-az}{b} = 0 \implies cx-az=0 \implies cx = az \iff \dfrac{z}{c} = \dfrac{x}{a}$
Từ hai điều trên
$\implies \dfrac{y}{b}=\dfrac{z}{c} = \dfrac{x}{a}$
 
D

dmlhhmlt

Bài 2:
Ta có:
$\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}$
\Leftrightarrow $\dfrac{abz-acy}{a^2}=\dfrac{bcx-baz}{b^2}=\dfrac{cay-cbx}{c^2}$ \Rightarrow $\dfrac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}=0$ (t/c dãy tỉ số bằng nhau)
\Rightarrow $\dfrac{bz-cy}{a}=0$
\Rightarrow $bz-cy=0$ \Rightarrow bz=cy hay $\dfrac{y}{b}=\dfrac{z}{c}$
tương tự ...........
 
Last edited by a moderator:
Top Bottom