Ta có: ${3^x} + {4^x} = {5^x}$ ($1$)
+/Với $x=0$ $ \to \left( 1 \right) \leftrightarrow 2 = 1\left( {loai} \right)$
+/Với $x=1$ $ \to \left( 1 \right) \leftrightarrow 7 = 5\left( {loai} \right)$
+/Với $x=2$ $ \to \left( 1 \right) \leftrightarrow {3^2} + {4^2} = {5^2}\left( {dung} \right)$
+/Với $x \ge 3$
$ \to \left( 1 \right) \leftrightarrow \dfrac{{{3^x}}}{{{5^x}}} + \dfrac{{{4^x}}}{{{5^x}}} = 1$
$ \leftrightarrow {\left( {\dfrac{3}{5}} \right)^x} + {\left( {\dfrac{4}{5}} \right)^x} = 1$
Có:${\left( {\dfrac{3}{5}} \right)^x} < {\left( {\dfrac{3}{5}} \right)^2};{\left( {\dfrac{4}{5}} \right)^x} < {\left( {\dfrac{4}{5}} \right)^2}$
$ \to {\left( {\dfrac{3}{5}} \right)^x} + {\left( {\dfrac{4}{5}} \right)^x} < {\left( {\dfrac{3}{5}} \right)^2} + {\left( {\dfrac{4}{5}} \right)^2} = 1$
KL: PT có no duy nhất $x=2$