[Toán 7] CMR:nếu $\dfrac{a}{b}> \dfrac{c}{d}$ thì $\dfrac{a}{b}> \dfrac{a+c}{b+d}> \dfrac{c}{d}$

1

17912

Last edited by a moderator:
H

harrypham

[TEX]\frac{a}{b}> \frac{c}{d} \Leftrightarrow ad>bc \Leftrightarrow ad+ab>bc+ab [/TEX]
[TEX]\Leftrightarrow a(d+b)>b(a+c) \Leftrightarrow \frac{a}{b}> \frac{a+c}{b+d}[/TEX].

Cũng do [TEX]ad>bc \Rightarrow ad+dc>bc+cd \Rightarrow d(a+c)>c(b+d) \Rightarrow \frac{a+c}{b+d}> \frac{c}{d}[/TEX].

Ta có đpcm.
 
H

hoahuongduong633

:D

Ta có [TEX]\mathit{\frac{a}{b}>\frac{c}{d}}[/TEX]
\Rightarrow [TEX]\mathit{ad>bc}[/TEX]
\Rightarrow [TEX]\mathit{ad+ab>bc+ab}[/TEX]
\Rightarrow [TEX]\mathit{a(d+b)>b(c+a)}[/TEX]
\Rightarrow [TEX]\mathit{\frac{a}{b}>\frac{a+c}{d+b}}[/TEX]
Tương tự với [TEX]\mathit{\frac{c}{d}}[/TEX]
Vậy từ đó ta sẽ có : [TEX]\mathit{\frac{a}{b}>\frac{a+c}{b+d}>\frac{c}{d}}[/TEX]:)>-
 
Top Bottom