JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser .
a, + $\triangle ABC $ có $\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^o$. Hay $60^o+\widehat{BAC}=180^o \Longrightarrow \widehat{BAC}=120^o$
+ AD là tia phân giác $ \widehat{BAC} \Longrightarrow \widehat{A_2}=\widehat{A_3}=120^o:2= 60^o $
+ Ta có $\widehat{BAC} +\widehat{A_1} = 180^o $ (kề bù). Hay $120^o+\widehat{A_1}=180^o \Longrightarrow \widehat{A_1}=60^o $
+ Ta có $\widehat{A_1}=60^o=\widehat{A_4}$ (đồi đỉnh)
$ \Longrightarrow \widehat{A_1}=\widehat{A_4}= \widehat{A_2}=\widehat{A_3}= 60^o$
+ CM: $\triangle NAC= \triangle DAC$ (gcg)
$\Longrightarrow NA=AD$ (2 cạnh tương ứng) (1)
+ CM: $\triangle AMB= \triangle ADB$ (gcg)
$\Longrightarrow AD=AM$ (2 cạnh tương ứng) (2)
+ Từ (1) và (2) $\Longrightarrow AM=AN $ (đpcm)
b, + ta có $\widehat{MAN}=\widehat{BAC}=120^o$ (đối đỉnh)
+ ta có $\widehat{MAO}=\widehat{A_4}+\widehat{A_3}= 60^o.2=120^o$
+ Ta có $\widehat{NAO}=\widehat{A_1}+\widehat{A_2}= 2.60^o= 120^o$
+ Theo phần a: $AN=AO \Longrightarrow \triangle NAO$ cân ở A $\Longrightarrow \widehat{ANO}=\widehat{AON}= (180^o-\widehat{NAO}):2= 30^o $
+ Theo phần a: $AN=AM \Longrightarrow \triangle NAM$ cân ở A $\Longrightarrow \widehat{AMN}=\widehat{ANM}= (180^o-\widehat{NAM}):2= 30^o $
+ Theo phần a: $AM=AO \Longrightarrow \triangle MAO$ cân ở A $\Longrightarrow \widehat{AMO}=\widehat{AOM}= (180^o-\widehat{MAO}):2= 30^o $
+ Ta có $\widehat{MNO}=\widehat{MNA}+\widehat{ANO}=30^o.2=60^o$
+ Ta có $\widehat{NMO}=\widehat{NMA}+\widehat{AMO}=30^o.2=60^o$
+ $\triangle MNO$ có $\widehat{MNO}=\widehat{NMO}=60^o$
$\Longrightarrow \triangle MNO $ đều (đpcm)