Giải:
TH1: x, y cùng dấu
\Rightarrow xy \geq 0
\Rightarrow x^2 + y^2 + xy \geq 0(1)
TH2: x, y trái dấu \Rightarrow xy = -lxyl \Rightarrow x^2 + y^2 +xy = x^2 + y^2 - lxyl
Có: (x - y) \geq 0
\Rightarrow x^2 + y^2 - 2xy \geq 0
\Rightarrow x^2 + y^2 \geq 2xy
\Rightarrow x^2 + y^2 \geq l2xyl \geq lxyl
\Rightarrow x^2 + y^2 - lxyl \geq 0
\Rightarrow x^2 + y^2 + xy \geq 0(2)
(1), (2)\Rightarrow x^2 + y^2 + xy \geq 0