[Toán 7] Chứng minh

K

kamawasi

Last edited by a moderator:
B

braga

[TEX]A=1-\frac{3}{4}+\left (\frac{3}{4} \right )^2-\left ( \frac{3}{4} \right )^3+....-\left (\frac{3}{4} \right )^{2009}+\left ( \frac{3}{4} \right )^{2010}[/TEX]

[TEX]\frac{3}{4}A=\frac{3}{4}-\left (\frac{3}{4} \right )^2+\left ( \frac{3}{4} \right )^3+....-\left (\frac{3}{4} \right )^{2010}-\left ( \frac{3}{4} \right )^{2011}[/TEX]

[TEX]\frac{3}{4}A+A=1-\frac{3}{4}+\left (\frac{3}{4} \right )^2-\left ( \frac{3}{4} \right )^3+....-\left (\frac{3}{4} \right )^{2009}+\left ( \frac{3}{4} \right )^{2010}+\frac{3}{4}-\left (\frac{3}{4} \right )^2+\left ( \frac{3}{4} \right )^3+....-\left (\frac{3}{4} \right )^{2010}-\left ( \frac{3}{4} \right )^{2011}[/TEX]

[TEX]\frac{7}{4}A=1+\left (\frac{3}{4} \right )^{2011} \Rightarrow A=\frac{4}{7}\left [ 1+\left (\frac{3}{4} \right )^{2011} \right ][/TEX]

[TEX]\Leftrightarrow \left{\begin{A>0}\\{A<1}[/TEX] [TEX]\Leftrightarrow 0<A<1 \Rightarrow [/TEX] A không phải là số nguyên
 
M

minhtuyb

[TEX]A=1-\frac{3}{4}+(\frac{3}{4})^2-(\frac{3}{4})^3+(\frac{3}{4})^4-.......-(\frac{3}{4})^{2009}+(\frac{3}{4})^{2010}(1)[/TEX]
[TEX]\Rightarrow \frac{3}{4}A=\frac{3}{4}-(\frac{3}{4})^2+(\frac{3}{4})^3-(\frac{3}{4})^4+.......-(\frac{3}{4})^{2010}+(\frac{3}{4})^{2011}(2)[/TEX]
Công (1) với (2) ta có::
[TEX]\frac{7}{4}A=1+(\frac{3}{4})^{2011}[/TEX]
[TEX]\Rightarrow A= \frac{4[1+(\frac{3}{4})^{2011}]}{7}=\frac{4+3.(\frac{3}{4})^{2010}}{7}[/TEX]
Mà [TEX](\frac{3}{4})^{2010}<1\Rightarrow 0<A<1\Rightarrow DPCM[/TEX]
 
Top Bottom