[Toán 7] chứng minh bài toán sau

T

thong7enghiaha


Ta có:

$\dfrac{a}{b}=\dfrac{c}{d}$

\Leftrightarrow $\dfrac{c}{a}=\dfrac{d}{b}$

\Leftrightarrow $\dfrac{c^2}{a^2}=\dfrac{d^2}{b^2}$

\Leftrightarrow $\dfrac{c^2}{a^2}+1=\dfrac{d^2}{b^2}+1$

\Leftrightarrow $\dfrac{c^2+a^2}{a^2}=\dfrac{d^2+b^2}{b^2}$

\Leftrightarrow $\dfrac{a^2}{c^2+a^2} = \dfrac{b^2}{d^2+b^2}$

$\to$ dpcm
 
T

tranlinh98

Có: [TEX] \frac{a}{b} = \frac{c}{d} [/TEX]
\Rightarrow
ad = bc \Leftrightarrow [TEX] a^2d^2 + b^2c^2[/TEX]
\Leftrightarrow
[TEX] a^2d^2 + a^2b^2 = b^2c^2 + a^2b^2[/TEX]
\Leftrightarrow
[TEX] a^2(b^2 + d^2) = b^2(a^2 + c^2)[/TEX]
\Leftrightarrow
[TEX] \frac{a^2}{a^2+c^2} = \frac{b^2}{b^2+d^2} [/TEX]
\Rightarrow
Đfcm
 
M

mua_sao_bang_98

Ta có $\frac{a2}{a^{2}+c^{2}}$ = $\frac{b^{2}}{b^{2}+d^{2}}$
\Leftrightarrow $\frac{a^{2}}{a^{2}}}$ + $\frac{a^{2}}{c^{2}}$ = $\frac{b^{2}}{d^{2}} +\frac{b^{2}}{b^{2}}$
\Leftrightarrow 1+$\frac{a^{2}}{c^{2}}$=1+$\frac{b^{2}}{d^{2}}$
\Leftrightarrow $\frac{a^{2}}{c^{2}}$ = $\frac{b^{2}}{d^{2}}$
\Leftrightarrow $\frac{a^{2}}{b^{2}}$=$\frac{c^{2}}{d^{2}}$
Mà $\frac{a}{b}=\frac{c}{d}$
\Rightarrow $\frac{a^{2}}{b^{2}}$=$\frac{c^{2}}{d^{2}}$

hì! mk làm hơi bị ngược xíu
 
Last edited by a moderator:
I

ilikemath

[tex]\frac{a}{b} = \frac{c}{d}[/tex]
[tex]\Rightarrow ad = bc[/tex]
[tex]\Rightarrow (ad)^2 = (bc)^2[/tex]
[tex]\Rightarrow (ad)^2 + (ab)^2 = (bc)^2 + (ab)^2[/tex]
[tex]\Rightarrow a^2(b^2 + d^2) = b^2(a^2 + c^2) [/tex]
[tex]\frac{a^2}{a^2 + c^2} = \frac{b^2}{b^2 + d^2}[/tex]
 
Top Bottom