[Toán 7] Các dạng toán chứng minh về phân số

T

thuynhung2000mk

Last edited by a moderator:
T

thinhrost1

Ta có:
A=$\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}$
=$\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}$
=$(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{99}+ \frac{1}{100})-2(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\frac{1}{100})$
=$(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{99}+ \frac{1}{100})-(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50})$

=$\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+....+ \dfrac{1}{100}$
=> $\dfrac{B}{A}=2013$
 
Last edited by a moderator:
H

huuthuyenrop2

A= [TEX]\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}[/TEX]
=[TEX] ( \frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100})-(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{50}[/TEX]
= [TEX]\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{99}\frac{1}{100}[/TEX]
\Rightarrow [TEX]\frac{B}{A}[/TEX]= 2013
 
Last edited by a moderator:
K

kakashi05

Ta có:

A=$\frac{1}{1.2}$+$\frac{1}{3.4}$+$\frac{1}{5.6}$+...+$\frac{1}{99.100}$

\LeftrightarrowA=$\frac{1}{1}$-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+....+$\frac{1}{99}$+$\frac{1}{100}$

\LeftrightarrowA=($\frac{1}{1}$+$\frac{1}{2}$+...+$\frac{1}{100}$) - 2($\frac{1}{2}$+$\frac{1}{4}$+...$\frac{1}{100}$)

\LeftrightarrowA=($\frac{1}{1}$+$\frac{1}{2}$+...+$\frac{1}{100}$) - ($\frac{1}{1}$+$\frac{1}{2}$+...+$\frac{1}{50}$)

\LeftrightarrowA=($\frac{1}{51}$+$\frac{1}{52}$+...+$\frac{1}{100}$)

\Rightarrow$\frac{B}{A}$=2013
 
Top Bottom