JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser .
a, + Gọi Ax là tia đối của tia AC
+ Ta có $\widehat{BAC}+\widehat{BAx}= 180^o$ (kề bù) $\to \widehat{BAx} = 180^o -\widehat{BAC}$
+ AE là tia phân giác $\widehat{BAx} \to \widehat{A_1}=\widehat{A_2}= \dfrac{180^o -\widehat{BAC}}{2}= 90^o - \dfrac{\widehat{BAC}}{2}$
+ $\Delta ABC$ có $\widehat{BAC}+ \widehat{ABC}+ \widehat{C} = 180^o \to \widehat{BAC} = 180^o - \widehat{ABC} - \widehat{C} $
+ $ \widehat{ABC}$ là góc ngoài ở đỉnh B của $\Delta ABC$ nên:
$ \widehat{ABC}= \widehat{A_1}+ \widehat{E}= 90^o - \dfrac{\widehat{BAC}}{2}+ \widehat{E} = 90^o - \dfrac{180^o - \widehat{ABC} - \widehat{C}}{2}+ \widehat{E} $
$= 90^o - 90^o + \dfrac{ \widehat{ABC}}{2}+ \dfrac{ \widehat{C}}{2}+ \widehat{E}= \dfrac{ \widehat{ABC}}{2}+ \dfrac{\widehat{C}}{2}+ \widehat{E}$
$\to \widehat{E} = \widehat{ABC} + \dfrac{ \widehat{ABC}}{2}+ \dfrac{ \widehat{C}}{2} = \widehat{ABC} - \dfrac{ \widehat{ABC}}{2}- \dfrac{ \widehat{C}}{2} = \dfrac{ \widehat{ABC}}{2}- \dfrac{ \widehat{C}}{2}$
Vậy $\widehat{E} = \dfrac{ \widehat{ABC}}{2}- \dfrac{ \widehat{C}}{2}$ (đpcm)
b, Ta có : $BK // AE \to \widehat{A_2}= \hat{K_1} $ (đồng vị) và $ \widehat{A_1}= \hat{B_1}$ (so le trong)
Mà $ \widehat{A_2}= \hat{A_1} \to \hat{B_1} = \hat{K_1}$ (đpcm)
jfkrebvfđkmvbksjrhgvmd cvmdfnhgk
dmfhnjmhgkjm xmbfkxdhgjnb v
dsmghkjnbvc,mghtuom