[Toán 7]Bài tập đại số

T

thangvegeta1604

1) C=$(1+\dfrac{1}{2}).(1+\dfrac{1}{3}).(1+\dfrac{1}{4}).(1+\dfrac{1}{5}).(1+\dfrac{1}{6}).(1+\dfrac{1}{7})$
C=$\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}.\dfrac{6}{5}.\dfrac{7}{6}.\dfrac{8}{7}$
C=$\dfrac{8}{2}=4$
 
T

thieukhang61

\[\begin{array}{l}
a)C = \left( {1 + \frac{1}{2}} \right).\left( {1 + \frac{1}{3}} \right).\left( {1 + \frac{1}{4}} \right).\left( {1 + \frac{1}{5}} \right).\left( {1 + \frac{1}{6}} \right).\left( {1 + \frac{1}{7}} \right)\\
= \frac{3}{2}.\frac{4}{3}.\frac{5}{4}.\frac{6}{5}.\frac{7}{6}.\frac{8}{7}\\
= \frac{{3.4.5.6.7.8}}{{2.3.4.5.6.7}}\\
= \frac{8}{2}\\
= 4\\
.......................................
\end{array}\]
 
T

thieukhang61

\[\begin{array}{l}
Ta\,\,co:\,\frac{a}{b} + \frac{b}{a} = \frac{{{a^2} + {b^2}}}{{ab}}\\
Gia\,\,su\,\,a = b + n\,(n \in Z)\\
= > \frac{{{a^2} + {b^2}}}{{ab}} = \frac{{{{(b + n)}^2} + {b^2}}}{{{b^2} + bn}} = \frac{{{b^2} + 2bn + {n^2} + {b^2}}}{{{b^2} + bn}} = \frac{{2{b^2} + 2bn + {n^2}}}{{{b^2} + bn}} = 2 + \frac{{{n^2}}}{{{b^2} + bn}} = 2 + \frac{{{n^2}}}{{ab}}\\
Vi\,\,a;b\,\, \in N* = > \frac{{{n^2}}}{{ab}} \ge 0 = > 2 + \frac{{{n^2}}}{{ab}} \ge 2 = > \frac{a}{b} + \frac{b}{a} \ge 2
\end{array}\]
 
Top Bottom