[TEX]A=\frac{1}{4^2}+ \frac{1}{8^ 2}+ \frac{1}{12^2}+ \frac{1}{16^2}+ \frac{1}{20^2}+ \frac{1}{24^2}+ \frac{1}{28^2}[/TEX]
[TEX]4^2A=1+\frac{1}{2^2}+ \frac{1}{3^2}+ \frac{1}{4^2}+ \frac{1}{5^2}+ \frac{1}{6^2}+ \frac{1}{7^2}[/TEX]
[TEX]\red Note :[/TEX] Với mọi [TEX]k\geq 1[/TEX] thì ta có:
[TEX]\frac{1}{k^2}=\frac{4}{4k^2}<\frac{4}{4k^2-1}=2(\frac{1}{2k-1}-\frac{1}{2k+1})[/TEX]
Áp dụng với [TEX]k=2;3;4;5;6;7[/TEX] ta được:
[TEX]\frac{1}{2^2}=\frac{4}{4.2^2}<\frac{4}{4.2^2-1}=\frac{2}{2.2-1}-\frac{2}{2.2+1}=\frac{2}{3}-\frac{2}{5}[/TEX]
[TEX]\frac{1}{3^2}=\frac{4}{4.3^2}<\frac{4}{4.3^2-1}=\frac{2}{2.3-1}-\frac{2}{2.3+1}=\frac{2}{5}-\frac{2}{7}[/TEX]
................................................................................
[TEX]\frac{1}{7^2}=\frac{4}{4.7^2}<\frac{4}{4.7^2-1}=\frac{2}{2.7-1}-\frac{2}{2.7+1}=\frac{2}{13}-\frac{2}{17}[/TEX]
Cộng lại ta được [TEX]16A<1+\frac{2}{3}<\frac{5}{3}[/TEX]
[TEX]\Rightarrow A<\frac{5}{3}:16=\frac{5}{48}<\frac{6}{48}=\frac{1}{8}. [/TEX] $\square$