( Toán 6 ) Tính

K

khanhly5c

T

thieukhang61

\[\begin{array}{l}
D{\rm{ }} = {\rm{ }}\frac{1}{{1.2.3.4.5}}{\rm{ + }}\frac{1}{{2.3.4.5.6}}{\rm{ }} + {\rm{ }}...{\rm{ }} + {\rm{ }}\frac{1}{{97.98.99.100.101}}\\
Su\,\,dung\,\,tinh\,\,chat:\,\,\frac{4}{{n(n + 1)(n + 2)(n + 3)(n + 4)}} = \frac{1}{{n(n + 1)(n + 2)(n + 3)}} - \frac{1}{{(n + 1)(n + 2)(n + 3)(n + 4)}}\\
4D = \frac{4}{{1.2.3.4.5}}{\rm{ + }}\frac{4}{{2.3.4.5.6}}{\rm{ }} + {\rm{ }}...{\rm{ }} + {\rm{ }}\frac{4}{{97.98.99.100.101}}\\
= \frac{1}{{1.2.3.4}} - \frac{1}{{2.3.4.5}} + \frac{1}{{2.3.4.5}} - \frac{1}{{3.4.5.6}} + ... + \frac{1}{{97.98.99.100}} - \frac{1}{{98.99.100.101}}\\
= \frac{1}{{1.2.3.4}} - \frac{1}{{98.99.100.101}}\\
D = \frac{{\frac{1}{{1.2.3.4}} - \frac{1}{{98.99.100.101}}}}{4}\,\,(tu\,\,tinh\,\,nhe!)\\

\end{array}\]
 
T

thieukhang61

\[\begin{array}{l}
D{\rm{ }} = {\rm{ }}\frac{1}{{1.2.3.4.5}}{\rm{ + }}\frac{1}{{2.3.4.5.6}}{\rm{ }} + {\rm{ }}...{\rm{ }} + {\rm{ }}\frac{1}{{97.98.99.100.101}}\\
Su\,\,dung\,\,tinh\,\,chat:\,\,\frac{4}{{n(n + 1)(n + 2)(n + 3)(n + 4)}} = \frac{1}{{n(n + 1)(n + 2)(n + 3)}} - \frac{1}{{(n + 1)(n + 2)(n + 3)(n + 4)}}\\
4D = \frac{4}{{1.2.3.4.5}}{\rm{ + }}\frac{4}{{2.3.4.5.6}}{\rm{ }} + {\rm{ }}...{\rm{ }} + {\rm{ }}\frac{4}{{97.98.99.100.101}}\\
= \frac{1}{{1.2.3.4}} - \frac{1}{{2.3.4.5}} + \frac{1}{{2.3.4.5}} - \frac{1}{{3.4.5.6}} + ... + \frac{1}{{97.98.99.100}} - \frac{1}{{98.99.100.101}}\\
= \frac{1}{{1.2.3.4}} - \frac{1}{{98.99.100.101}}\\
D = \frac{{\frac{1}{{1.2.3.4}} - \frac{1}{{98.99.100.101}}}}{4}\,\,(tu\,\,tinh\,\,nhe!)\\

\end{array}\]
Bài này mình chỉ giải bài trên. Các bài còn lại bạn tự giải nhé. Công thức chung (theo như mình biết) là thế này:
$\frac{x}{n(n+1)(n+2)...(n+x)}=\frac{1}{n(n+1)(n+2)...[n+(x-1)]}-\frac{1}{(n+1)(n+2)...(n+x)}$
Tự giải thì mới thuộc được!;)
 
T

thieukhang61

\[\begin{array}{l}
E = \frac{4}{{1.2.3}} + \frac{4}{{2.3.4}} + ... + \frac{4}{{n(n + 1)(n + 2)}}\\
Ap\,\,dung\,\,tinh\,\,chat:\,\,\frac{2}{{n(n + 1)(n + 2)}} = \frac{1}{{n(n + 1)}} - \frac{1}{{(n + 1)(n + 2)}}\\
\frac{1}{2}E = \frac{2}{{1.2.3}} + \frac{2}{{2.3.4}} + ... + \frac{2}{{n(n + 1)(n + 2)}}\\
= \frac{1}{{1.2}} - \frac{1}{{2.3}} + \frac{1}{{2.3}} - \frac{1}{{3.4}} + ... + \frac{1}{{n(n + 1)}} - \frac{1}{{(n + 1)(n + 2)}}\\
= \frac{1}{{1.2}} - \frac{1}{{(n + 1)(n + 2)}}\\
= \frac{1}{2} - \frac{1}{{(n + 1)(n + 2)}}\\
= \frac{{(n + 1)(n + 2) - 2}}{{2(n + 1)(n + 2)}}\\
E = 2.\frac{{(n + 1)(n + 2) - 2}}{{2(n + 1)(n + 2)}} = \frac{{(n + 1)(n + 2) - 2}}{{(n + 1)(n + 2)}} = 1 + \frac{{ - 2}}{{(n + 1)(n + 2)}}\\
\\

\end{array}\]
 
T

thieukhang61

\[\begin{array}{l}
F = \frac{{10}}{{1.2.3.4.5.6}} + \frac{{10}}{{2.3.4.5.6.7}} + ... + \frac{{10}}{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)\left( {n + 4} \right)\left( {n + 5} \right)}}\\
Ap\,\,dung\,\,tinh\,\,chat:\,\,\frac{5}{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)\left( {n + 4} \right)\left( {n + 5} \right)}} = \frac{1}{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)\left( {n + 4} \right)}} - \frac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)\left( {n + 4} \right)\left( {n + 5} \right)}}\\
\frac{1}{2}F = \frac{5}{{1.2.3.4.5.6}} + \frac{5}{{2.3.4.5.6.7}} + ... + \frac{5}{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)\left( {n + 4} \right)\left( {n + 5} \right)}}\\
= \frac{1}{{1.2.3.4.5}} - \frac{1}{{2.3.4.5.6}} + \frac{1}{{2.3.4.5.6}} - \frac{1}{{3.4.5.6.7}} + ... + \frac{1}{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)\left( {n + 4} \right)}} - \frac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)\left( {n + 4} \right)\left( {n + 5} \right)}}\\
= \frac{1}{{1.2.3.4.5}} - \frac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)\left( {n + 4} \right)\left( {n + 5} \right)}}\\
= \frac{{\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)\left( {n + 4} \right)\left( {n + 5} \right) - 120}}{{120.\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)\left( {n + 4} \right)\left( {n + 5} \right)}}\\
F = 2.\frac{{\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)\left( {n + 4} \right)\left( {n + 5} \right) - 120}}{{120.\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)\left( {n + 4} \right)\left( {n + 5} \right)}}\\
= \frac{{\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)\left( {n + 4} \right)\left( {n + 5} \right) - 120}}{{60.\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)\left( {n + 4} \right)\left( {n + 5} \right)}}\\
Xong\,\,roi!Met\,\,qua!\\

\end{array}\]
 
D

duc_2605

Đề phải như thế này:
E = 4/1.2.3 + 4/2.3.4 + ... + 4/n ( n + 1 ) ( n + 2 )
$E = \dfrac{4}{1.2.3} + \dfrac{4}{2.3.4} + ... + \dfrac{4}{n(n+1)(n+2)}$
$1/2E = \dfrac{2}{1.2.3} + \dfrac{2}{2.3.4} + ... + \dfrac{2}{n(n+1)(n+2)}$
$1/2E = \dfrac{1}{1.2} - \dfrac{1}{2.3}+ \dfrac{1}{2.3} - \dfrac{1}{3.4} + ... + \dfrac{1}{n(n+1)} - \dfrac{1}{(n+1)(n+2)}$
$1/2E = \dfrac{1}{1.2} - \dfrac{1}{(n+1)(n+2)}$
\Rightarrow $E = (\dfrac{1}{1.2} - \dfrac{1}{(n+1)(n+2)}) . 2$
$E = 1 - \dfrac{2}{(n+1)(n+2)}$
Xong.
 
Top Bottom