a, $\dfrac{\dfrac{2^7}{5^7} . 5^7+\dfrac{4^3}{9^3} . \dfrac{3^3}{16^3}}{2^7 . 5^2+512}$ = $\dfrac{\dfrac{2^7 . 5^7}{5^7} +\dfrac{4^3}{3^6} . \dfrac{3^3}{4^6}}{2^7 . 5^2+512}$
= $\dfrac{\dfrac{2^7}{5^7} . 5^7+\dfrac{4^3}{3^6} . \dfrac{3^3}{4^6}}{2^7 . 5^2+ 2^7 . 2^2}$ = $\dfrac{2^7 +\dfrac{1}{12^3}}{2^7 . (5^2+2^2}$
= $\dfrac{2^7 }{2^7 . (5^2+2^2} + \dfrac{\dfrac{1}{12^3}}{2^7 . (5^2+2^2}$ = $\dfrac{1}{29}$ + $\dfrac{\dfrac{1}{2^6 . 3^3}}{2^7 . 5^2+2^9}$
= $\dfrac{1}{29}$ + $\dfrac{\dfrac{1}{2^6 . 3^3}}{2^7 . 5^2+2^9}$ = $\dfrac{1}{29}$ + $\dfrac{1}{2^6 . 3^3} . \dfrac{1}{2^7 . 29}$
= $\dfrac{1}{29} . (1 + \dfrac{1}{2^6 . 2^7 . 3^3})$
= $\dfrac{1}{29} . (1 + \dfrac{1}{2^{13} . 3^3})$
Làm tiếp sẽ được:
$\dfrac{1}{29}.(1 + 1 + \dfrac{1}{2^{13} . 3^3}$)
= $\dfrac{1}{29.2^{15}.27}$
Tử bé như vậy thì mình chỉ làm được như vậy thôi.