[Toán 6] Phân số!

L

leemin_28

E

eye_smile

1a,
Có: $(1+\dfrac{1}{2})(1+\dfrac{1}{3})(1+\dfrac{1}{4})...(1+\dfrac{1}{99})$
$=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}....\dfrac{100}{99}$
$=\dfrac{3.4.5...100}{2.3.4...99}$
$=\dfrac{100}{2}$ (Rút gọn bên trên đi mà)
$=50$
 
Last edited by a moderator:
E

eye_smile

1b,
$(\dfrac{1}{2}-1)(\dfrac{1}{3}-1)(\dfrac{1}{4}-1)...(\dfrac{1}{100}-1)$
$=\dfrac{-1}{2}.\dfrac{-2}{3}.\dfrac{-3}{4}...\dfrac{-99}{100}$
$=\dfrac{-1.2.3...99}{2.3.4...100}=\dfrac{-1}{100}$
1c,$\dfrac{3}{{2^2}}.\dfrac{8}{{3^2}}.\dfrac{15}{{4^2}}...\dfrac{899}{{30^2}}$
$=\dfrac{3.8.15...899}{(2.3.4...30).(2.3.4...30)}$
$=\dfrac{(1.3).(2.4).(3.5)...(29.31)}{(2.3.4...30).(2.3.4...30)}$
$=\dfrac{(1.2.3...29).(3.4.5...31}{(2.3.4...30).(2.3.4...30)}=\dfrac{31}{30.2}=\dfrac{31}{60}$
 
Last edited by a moderator:
T

tranhainam1801

c)
=$\dfrac{3.8.15...899}{2^{2}.3^{2}.4^{2}.....30^{2}}$
=$\dfrac{1.3.2.4.3.5....29.31}{2.2.3.3.4.4.....30.30}$
=$\dfrac{(1.2.3.4.5...29).(3.4.5.6...31)}{(2.3.4.....30).(2.3.4.5...30}$
=$\dfrac{31}{30.2}$
 
Last edited by a moderator:
Top Bottom