[Toán 6]-Phân số khó.

T

thaolovely1412

1)
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80

1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)

Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60

và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80

Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12

=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12

=> ĐPCM

gõ latex
 
Last edited by a moderator:
S

sieumau88

2) Cho A=$\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}$+...+$\frac{1}{2011^2}$
So sánh A với $\frac{3}{4}$

Ta có: $A=\dfrac{1}{2^2}+\dfrac{1}{3.3}+\dfrac{1}{4.4} + ... + \dfrac{1}{2011.2011}$ $<$ $\dfrac{1}{2^2}+\dfrac{1}{2.3}+\dfrac{1}{3.4} + ... + \dfrac{1}{2010.2011}$

$A < \dfrac{1}{2^2} + \dfrac{1}{2} - \dfrac{1}{3}+\dfrac{1}{3} - \dfrac{1}{4} + ... + \dfrac{1}{2010} - \dfrac{1}{2011}$

$A < \dfrac{1}{2^2} + \dfrac{1}{2} - \dfrac{1}{2011}$

$A < \dfrac{3}{4} - \dfrac{1}{2012}$

Vậy $A < \dfrac{3}{4}$
 
H

hiennguyenthu082

Bài 1 :
A=$\frac{1}{41}$+$\frac{1}{42}$+$\frac{1}{43}$+...+$\frac{1}{80}$
=($\frac{1}{41}$+$\frac{1}{42}$+...+$\frac{1}{60}$)+($\frac{1}{61}$+$\frac{1}{62}$+...+$\frac{1}{80}$)
\Rightarrow A>$\frac{1}{60}$.20+$\frac{1}{80}$.20
\Rightarrow A>$\frac{1}{3}$+$\frac{1}{4}$
\Rightarrow A>$\frac{7}{12}$
 
Top Bottom