[Toán 6] Hãy so sánh A-B với 1

0

0973573959thuy

CHo A = 1 + 1/3 + 1/5 + 1/7 + ... + 1/2009 +1/2011 và B = 1/2 + 1/4 + 1/6 + ... + 1/2010 + 1/2012 . Hãy so sánh A-B với 1

A - B =(1 + 1/3 + 1/5 + 1/7 + ... + 1/2009 +1/2011) - (1/2 + 1/4 + 1/6 + ... + 1/2010 + 1/2012 )
A - B = 1 + 1/3 + 1/5 + 1/7 + ... + 1/2009 +1/2011 - 1/2- 1/4 - 1/6 - ... - 1/2010 1/2012
A - B = 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 +..... 1/2011 - 1/2012
A - B = 1/ 1.2 + 1/3.4 + 1/5.6 + .... + 1/2011. 2012
A - B = 1 - 1 / 2012 = 2011 /2012 < 1
Vậy A - B < 1
 
K

kool_boy_98

CHo A = 1 + 1/3 + 1/5 + 1/7 + ... + 1/2009 +1/2011 và B = 1/2 + 1/4 + 1/6 + ... + 1/2010 + 1/2012 . Hãy so sánh A-B với 1

Ta có:

$A-B=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+.....+ \frac{1}{2011}-\frac{1}{2}-\frac{1}{4}-.......-\frac{1}{2012}$

$=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2011}-\frac{1}{2012}$

$=\frac{1}{2}+\frac{1}{3.4}+....+\frac{1}{2011.2012}$

\Rightarrow $A-B < 1$
___________________
Chúc em học tốt!
 
T

tanngoclai

Ta có :

[TEX]A = 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + ... + \frac{1}{2011} \\ B = \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + ... + \frac{1}{2012} [/TEX]

[TEX] A - B = ( 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + ... + \frac{1}{2011} ) - ( \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + ... + \frac{1}{2012} ) \\ A - B = ( 1 - \frac{1}{2} ) + ( \frac{1}{3} - \frac{1}{4} ) + ( \frac{1}{5} - \frac{1}{6} ) + ( \frac{1}{7} - \frac{1}{8} ) + ... + ( \frac{1}{2011} - \frac{1}{2012} ) \\ A - B < ( 1 - \frac{1}{2} ) + ( \frac{1}{2} - \frac{1}{3} ) + ( \frac{1}{3} - \frac{1}{4} ) + ( \frac{1}{4} - \frac{1}{5} ) + ... + ( \frac{1}{1006} - \frac{1}{1007} ) \\ A - B < 1 - \frac{1}{1007} < 1 [/TEX]
 
Top Bottom