[Toán 6] $\dfrac{1}{5} + \dfrac{2}{5^2} + \dfrac{3}{5^3} + .... + \dfrac{2012}{5^{2012}}$

H

hiensau99

So sánh 1/5 + 2/5^2 + 3/5^3 + .... + 2012/5^2012 với 1/3.:)/:):)>-

Tính $S= \dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+ \dfrac{1}{5^{2012}} $


$ \rightarrow \dfrac{1}{5}S=\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+ \dfrac{1}{5^{2013}} $

$ \rightarrow S- \dfrac{1}{5}S= \dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+ \dfrac{1}{5^{2012}}- \dfrac{1}{5^2}- \dfrac{1}{5^3}-...- \dfrac{1}{5^{2013}} $

$\rightarrow \dfrac{4}{5}S= \dfrac{1}{5}- \dfrac{1}{5^{2013}} $

$\rightarrow S= \dfrac{1}{5}. \dfrac{5}{4}- \dfrac{1}{5^{2013}}. \dfrac{5}{4} $


$\rightarrow S= \dfrac{1}{4}- \dfrac{1}{5^{2012}.4}$

Đặt $A= \dfrac{1}{5}+ \dfrac{2}{5^2}+ \dfrac{3}{5^3}+...+\dfrac{2012}{5^{2012}}$

$ \rightarrow \dfrac{1}{5}A= \dfrac{1}{5^2}+ \dfrac{2}{5^3}+\dfrac{3}{5^4}+...+\dfrac{2012}{5^{2013}}$

$\rightarrow A- \dfrac{1}{5}A=\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+...+\dfrac{2012}{5^{2012}}- \dfrac{1}{5^2}-\dfrac{2}{5^3}-\dfrac{3}{5^4}-...-\dfrac{2012}{5^{2013}}$


$\rightarrow \dfrac{4}{5}A=\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2012}}-\dfrac{2012}{5^{2013}}$

$ \rightarrow \dfrac{4}{5}A = \dfrac{1}{4}-\dfrac{1}{5^{2012}.4}-\dfrac{2012}{5^{2013}}$

$\rightarrow A= \dfrac{1}{4}. \dfrac{5}{4}-\dfrac{1}{5^{2012}.4}. \dfrac{5}{4}-\dfrac{2012}{5^{2013}}. \dfrac{5}{4}$

$\rightarrow A= \dfrac{5}{16}-\dfrac{1}{5^{2011}.16}-\dfrac{2012}{5^{2012}.4}$

Ta có $\dfrac{5}{16}< \dfrac{5}{15}= \dfrac{1}{3} $

$\rightarrow \dfrac{5}{16}-\dfrac{1}{5^{2011}.16}. \dfrac{5}{4}-\dfrac{2012}{5^{2012}.4}< \dfrac{1}{3}$

Vậy: $\dfrac{1}{5}+ \dfrac{2}{5^2}+ \dfrac{3}{5^3}+...+\dfrac{2012}{5^{2012}}<\dfrac{1}{3}$
 
Last edited by a moderator:
E

eye_smile

Vì [tex]\frac{1}{5} + \frac{1}{{{5^2}}} + \frac{1}{{{5^3}}} + ... + \frac{1}{{{5^{2012}}}} = S = \frac{1}{4} - \frac{1}{{{5^{2012}}.4}}[/tex]
Thay vào chỗ 4/5A đó bạn!!!!!!!!:):):):):):):):):)
 
Top Bottom