[ Toán 6 ] Chứng minh

T

tanngoclai

Ta có :

$$100 - ( 1 + \frac{1}{2} + \frac{1}{3} + ... +\frac{1}{100} )$$
$$=(1+1+1+...+1) - ( \frac{1}{2} + \frac{1}{3} + ... +\frac{1}{100} )$$
$$= (1-1) + (1-\frac{1}{2}) + (1-\frac{1}{3}) + ... + (1-\frac{1}{100})$$
$$= 0 + \frac{1}{2} + \frac{2}{3} + ... + \frac{99}{100} = \frac{1}{2} + \frac{2}{3} + ... + \frac{99}{100}$$
 
Top Bottom