[Toán 6] Chứng minh, rút gọn

T

tayhd20022001


1. Chứng minh $8351^{634}$ + $8241^{142}$ chia hết cho 26
$$Giải$$
Ta có :
Đặt A = $8351^634$ + $8241^142$ = $(8351^2)^{317}$ + $8241^{142}$
Ta có:
8351 ≡ 5 (mod 26) => $8351^2$ ≡ $5^2$ ≡ 25 ≡ -1 (mod 26) => $(8351^2)^{317}$ ≡ $(-1)^{317}$ ≡ -1 (mod 26)
8241 ≡ -1 (mod 26) => $8241^{142}$ ≡ $(-1)^{142}$ ≡ 1 (mod 26)
=> A = $(8351^2)^{317}$ + $8241^{142}$ ≡ -1 + 1 ≡ 0 (mod 26) => A chia hết cho 26

\Rightarrow A=$8351^{142}$.$8351^{492}$ +$8241^{142}$
 
T

tayhd20022001


2. Rút gọn biểu thức A = $75.( 4^{1993}+4^{1992}+...+4^2+5)+25$
$$Giải$$
Ta có :
A = $75.( 4^{1993}+4^{1992}+...+4^2+5)+25$
\Rightarrow A = $25.3.( 4^{1993}+4^{1992}+...+4^2+5)+25$
\Rightarrow A = $25.(3+1).(4^{1993}+4^{1992}+...+4^2+5)$
\Rightarrow A = $25.4.(4^{1993}+4^{1992}+...+4^2+5)$
\Rightarrow A = $25.(4^{1994}+4^{1993}+...+4^3+20)$
Đó
 
Top Bottom