[Toán 6] Chữ số tận cùng

D

duc_2605

S=1+2^1+2^2+2^3+...+2^103
= $(1 + 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7) + (2^8 + 2^9 + 2^{10} + 2^{11} + 2^{12} + 2^{13} + 2^{14} + 2^{15}) + ... + (2^{96} + 2^{97} + 2^{98} + 2^{99} + 2^{100} + 2^{101} + 2^{102} + 2^{103})$
= $(1 + 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7) +
2^8 (1 + 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7) + ... + 2^{96} (1 + 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7)$
= $255 + 2^8 . 255 + 2^{16} . 255 +...+ 2^{96} . 255$
\Rightarrow $\vdots$ 255
 
T

thinhrost1

S=1+2^1+2^2+2^3+...+2^103
= $(1 + 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7) + (2^8 + 2^9 + 2^{10} + 2^{11} + 2^{12} + 2^{13} + 2^{14} + 2^{15}) + ... + (2^{96} + 2^{97} + 2^{98} + 2^{99} + 2^{100} + 2^{101} + 2^{102} + 2^{103})$
= $(1 + 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7) +
2^8 (1 + 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7) + ... + 2^{96} (1 + 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7)$
= $255 + 2^8 . 255 + 2^{16} . 255 +...+ 2^{96} . 255$
\Rightarrow $\vdots$ 255

Giải quyết nốt tìm chữ số tận cùng.

Ta có:

$2^8 . 255 + 2^{16} . 255 +...+ 2^{96} . 255$ có chữ số tận cùng là 0

nên $S=1+2^1+2^2+2^3+...+2^{103}=255 + 2^8 . 255 + 2^{16} . 255 +...+ 2^{96} . 255$ có chữ số tận cùng là 5.
 
Top Bottom