$$ A = \frac{1}{4^2} + \frac{1}{8^2} + \frac{1}{12^2} + \frac{1}{16^2} + \frac{1}{20^2} + \frac{1}{24^2} + \frac{1}{28^2} $$
$$ A = \frac{1}{4^2} + \frac{1}{4^2.2^2} + \frac{1}{4^2.3^2 } + \frac{1}{4^2.4^2} + \frac{1}{4^2.5^2} + \frac{1}{4^2.6^2} + \frac{1}{4^2.7^2} $$
$$ A = \frac{1}{4^2}.(1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} ) $$
$$ A < \frac{1}{16}.(1 + \frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + \frac{1}{5.6} + \frac{1}{6.7} ) $$
$$ A < \frac{1}{16}.(1 + 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \frac{1}{4} - \frac{1}{5} + \frac{1}{5} - \frac{1}{6} + \frac{1}{6} - \frac{1}{7} ) $$
$$ A < \frac{1}{16}.(1 + 1 - \frac{1}{7} ) $$
$$ A < \frac{1}{16}.( 2 - \frac{1}{7} ) < \frac{1}{16}.2 = \frac{1}{8} $$
$$ Suy \ ra : \frac{1}{4^2} + \frac{1}{8^2} + \frac{1}{12^2} + \frac{1}{16^2} + \frac{1}{20^2} + \frac{1}{24^2} + \frac{1}{28^2} < \frac{1}{8} ( đpcm )$$