[toán 6] Chia hết

L

luongpham2000

Cho C = [tex]2^0 + 2^1 + 2.(2^2 + 2^3 + ... + 2^9 + 2^10) + 2^11 + 2^12 [/tex]

Chứng tỏ C chia hết cho 5

P/s: ba số cuối là mũ 10, 11, 12


$C=2^{0}+2^{1}+2.(2^{2}+2^{3}+...+2^{9}+2^{10})+2^{11}+2^{12}$
$=(2^{0}+2^{1}+2^{11}+2^{12})+2.(2^{2}+2^{3}+....+2^{10})$
$=2^{0}+2^{11}+2(2^{0}+2^{11})+2.[(2^{2}.2^{4}).(2^{3}.2^{5}).....(2^{8}.2^{10})]$
$=2^{0}+2^{11}(2+1)+2.[2^{2}.(2^{0}+2^{2})+2^{3}.(2^{0}+2^{2})+....+2^{8}.(2^{0}+2^{2})]$
$2^{11}=2^{8}.2^{3}=\overline{...6}.8=\overline{...8}$
$=(1+\overline{....8}).3+2.(2^{2}.5+2^{3}.5+....+2^{8}.5)$
$=\overline{.....7}+2.5.(2^{2}+2^{3}+....+2^{8})$
\Rightarrow Đề sai
 
Top Bottom