$B$=( $\dfrac{3^2}{10}$ + $\dfrac{3^2}{40}$ + $\dfrac{3^2}{88}$)$ + $( $\dfrac{-3}{5}$ -$\dfrac{3}{20}$ - $\dfrac{3}{44}$ - $\dfrac{3}{77}$ + $\dfrac{-3}{119}$ - $\dfrac{3}{170}$ )
\Rightarrow $B$=( $\dfrac{9}{10}$ + $\dfrac{9}{40}$ + $\dfrac{9}{88}$)$ + $3$ .$( $\dfrac{-1}{5}$ -$\dfrac{1}{20}$ - $\dfrac{1}{44}$ - $\dfrac{1}{77}$ + $\dfrac{-1}{119}$ - $\dfrac{1}{170}$ )
\Rightarrow $B$=3.3.( $\dfrac{1}{10}$ + $\dfrac{1}{40}$ + $\dfrac{1}{88}$)$ + $3$ .$( $\dfrac{-1}{5}$ -$\dfrac{1}{20}$ - $\dfrac{1}{44}$ - $\dfrac{1}{77}$ + $\dfrac{-1}{119}$ - $\dfrac{1}{170}$ )
\Rightarrow $B$=3.3.( $\dfrac{1}{2.5}$ + $\dfrac{1}{5.8}$ + $\dfrac{1}{8.11}$)$ + $3$ .$( $\dfrac{-1}{5}$ -$\dfrac{1}{20}$ - $\dfrac{1}{44}$ - $\dfrac{1}{77}$ + $\dfrac{-1}{119}$ - $\dfrac{1}{170}$ )
Vậy \Rightarrow $\dfrac{1}{2}$-$\dfrac{1}{5}$=$\dfrac{3}{10}$
\Rightarrow B sẽ phải giảm đi 3 lần .
Từ đó ta có :
\Rightarrow $B$=3.( $\dfrac{1}{2}$-$\dfrac{1}{5}$ + $\dfrac{1}{5}$-$\dfrac{1}{8}$ + $\dfrac{1}{8}$-$\dfrac{1}{11}$)$ + $3$ .$( $\dfrac{-1}{5}$ -$\dfrac{1}{20}$ - $\dfrac{1}{44}$ - $\dfrac{1}{77}$ + $\dfrac{-1}{119}$ - $\dfrac{1}{170}$ )
\Rightarrow $B$=3.( $\dfrac{1}{2}$-$\dfrac{1}{11}$)$ + $3$ .$( $\dfrac{-1}{5}$ -$\dfrac{1}{20}$ - $\dfrac{1}{44}$ - $\dfrac{1}{77}$ + $\dfrac{-1}{119}$ - $\dfrac{1}{170}$ )
\Rightarrow $B$= $\dfrac{27}{22}$ + $3$ .( $\dfrac{-1}{5}$ -$\dfrac{1}{20}$ - $\dfrac{1}{44}$ - $\dfrac{1}{77}$ + $\dfrac{-1}{119}$ - $\dfrac{1}{170}$ )
\Rightarrow $B$= $\dfrac{27}{22}$ + 3.$\dfrac{-3}{10}$
\Rightarrow $B$= $\dfrac{27}{22}$ + $\dfrac{-9}{10}$
\Rightarrow $B$= $\dfrac{18}{55}$