[ Toán 6 ] Bài khó

H

huuthuyenrop2

Ta có:
$\dfrac{1}{2^2}$ < $\dfrac{1}{1.2}$
$\dfrac{1}{3^2}$ < $\dfrac{1}{2.3}$
...............
$\dfrac{1}{100^2}$ < $\dfrac{1}{99.100}$
A< $\dfrac{1}{1.2}$ + $\dfrac{1}{2.3}$+ .............+ $\dfrac{1}{99.100}$
Mà $\dfrac{1}{1.2}$ + $\dfrac{1}{2.3}$+ .............+ $\dfrac{1}{99.100}$
= 1- $\dfrac{1}{2}$ + $\dfrac{1}{2}$ - $\frac{1}{3}$ + .............+ $\dfrac{1}{99}$ - $\dfrac{1}{100}$
= 1 - $\dfrac{1}{100}$ < 1
\Rightarrow A< 1


 
H

hiennguyenthu082

Ta có :

$\dfrac{1}{2^2}$ < $\dfrac{1}{1.2}$

$\dfrac{1}{3^2}$ < $\dfrac{1}{2.3}$

$\dfrac{1}{4^2}$ < $\dfrac{1}{3.4}$
....

$\dfrac{1}{100^2}$ < $\dfrac{1}{99.100}$

Cộng vế với vế , ta có :

$\dfrac{1}{2^2}$ + $\dfrac{1}{3^2}$ + $\dfrac{1}{4^2}$ +...+ $\dfrac{1}{100^2}$ < $\dfrac{1}{1.2}$ + $\dfrac{1}{2.3}$ + $\dfrac{1}{3.4}$ +...+$\dfrac{1}{99.100}$

\Rightarrow A < $\dfrac{1}{1.2}$ + $\dfrac{1}{2.3}$ + $\dfrac{1}{3.4}$ +...+$\dfrac{1}{99.100}$

\Rightarrow A < 1 - $\dfrac{1}{2}$ + $\dfrac{1}{2}$ - $\dfrac{1}{3}$ +...+$\dfrac{1}{99}$ - $\dfrac{1}{100}$

\Rightarrow A < 1-$\dfrac{1}{100}$ < 1

Vậy A = $\dfrac{1}{2^2}$ + $\dfrac{1}{3^2}$ + $\dfrac{1}{4^2}$ +...+ $\dfrac{1}{100^2}$ < 1
 
Top Bottom