[Toán 12]

V

vanculete

[tex]\mathrm{(I){\left{\begin{y-x=a(1)}\\{e^x-e^y=ln(1+x)-ln(1+y)(2)}[/tex]

CMR: \forall a>0 hệ trên có nghiêm duy nhất.
Bài giải

[TEX]DKXD : x>1 ;y>1 \\ khi-do-(1) \Leftrightarrow \ y=a+x the-vao-(2)-duoc\\ e^x-e^{a+x}=ln(1+x}-ln{1+x+a}\\(I)-co-nghiem-duy-I-\Leftrightarrow \ ...\\Coif(x) = e^x(1-e^a) +ln (1+ \frac{a}{1+x})\\f(x) lien -tuc-tren (-1;+\infty) \\ \lim_{x\to -1} f(x)=-\infty \\ \lim_{x\to +\infty } = +\infty\\\Rightarrow \ f(x)=0 co-nghiem-tren (0;+\infty) \\ f'(x)=e^x(1-e^a) +\frac{1}{1+x+a}-\frac{1}{1+x}<0 \forall x \in (-1 ; +\infty ) ;a>0 \\ f(x) -la-h/s-NB-tren (-1;+\infty ) \\Ket-hop-DK- he -(I) -co-nghiem-duy-nhat[/TEX]
 
Last edited by a moderator:
Top Bottom