H
happy95
Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
1. Giải các hệ phương trình sau: (mọi người ghi phương pháp tổng quát cách làm và làm cụ thể ra cho mình với nhé.)
a) [TEX]\left\{\begin{array}(17-3x)\sqrt{5-x}+(3y-4)\sqrt{4-y}=0\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\end{array}\right[/TEX]
b)[TEX]\left\{\begin{array}4+9.3^{x^2-2y}=(4+9^{x^2-2y}).7^{2y-x^2+2}\\4^x+4=4x+4\sqrt{2y-2x+4}\end{array}\right[/TEX]
c) [TEX]\left\{\begin{array}(y-2)\sqrt{3-2y}-2x(16x^2+1)=0\\16x^2+y^2+2y+2\sqrt{3+8x}=6\end{array}\right[/TEX]
d) [TEX]\left\{\begin{array}log_2\sqrt{x+3}=log_33y\\log_2\sqrt{y+3}=log_33x\end{array}\right[/TEX]
e) [TEX]\left\{\begin{array}x^2+y^2=1\\\sqrt[2011]{x}-\sqrt[2011]{y}=(\sqrt[2012]{y}-\sqrt[2012]{x})(x+y+xy+2013)\end{array}\right[/TEX]
f) [TEX]\left\{\begin{array}xy+\sqrt{2(x^4+y^4)}=1\\x^{2009}y^{2013}+x^{2013}y^{2009}=\frac{2}{3^{2011}}\end{array}\right[/TEX]
2.Tính các tích phân sau:
a) [TEX]\int\limits_{0}^{\frac{\pi}{6}}\frac{sin3x}{cos^2x}dx[/TEX]
b)[TEX]\int\limits_{4}^{8}\frac{\sqrt{x^2-16}}{x}dx[/TEX]
c) [TEX]\int\limits_{1}^{4}\sqrt{\frac{1}{4x}+\frac{\sqrt{x}+e^x}{\sqrt{x}e^{2x}}dx[/TEX]
d) [TEX]\int\limits_{0}^{\frac{\pi}{2}\sqrt[10]{1-cos^5x}.sinx.cos^9xdx[/TEX]
e) [TEX]\int\limits_{ln2}^{ln5}\frac{dx}{(10e^{-x}-1)(\sqrt{e^x-1})}[/TEX]
f) [TEX]\int\limits_{\frac{-1}{2}}^{0}\frac{dx}{1+\sqrt{-x(1+x)}}[/TEX]
g) [TEX]\int\limits_{-1}^{1}\frac{dx}{1+x+x^2+\sqrt{x^4+3x^2+1}}dx[/TEX]
h) [TEX]\int\limits_{2}^{4}\frac{\sqrt{ln(9-x)}}{\sqrt{ln(9-x)}+\sqrt{ln(x+3)}}dx[/TEX]
i) Cho số thực a>ln2. Tính [TEX]J=\int\limits_{a}^{ln10}\frac{e^x}{\sqrt[3]{e^x-2}}dx[/TEX] và từ đó suy ra [TEX]\lim_{a\to ln2}J[/TEX]
k) [TEX]\int\limits_{1}^{e}\frac{(log_2x)^3}{x\sqrt{1+3ln^2x}}dx[/TEX]
l) Cho hàm số: [TEX]f(x)=\frac{a}{(x+1)^3}+bxe^x[/TEX]. Tìm a, b biết: [TEX]f'(0)=22[/TEX] và [TEX]\int\limits_{0}^{1}f(x)dx=5[/TEX]
m) [TEX]\int\limits_{\frac{pi}{6}}^{\frac{pi}{4}}\frac{cos^2x}{sin^3xsin(x+\frac{pi}{4})}dx[/TEX]
n) [TEX]\int\limits_{0}^{\pi^2}\sqrt{x}sin{\sqrt{x}}dx[/TEX]
p) [TEX]\int\limits_{1}^{2}\frac{dx}{x(x^{2012}+1)}dx[/TEX]
q) [TEX]\int\limits_{0}^{3ln2}\frac{dx}{(\sqrt[3]{e^x}+2)^2}[/TEX]
r) [TEX]\int\limits_{1}^{e}\frac{ln^2x+lnx}{(lnx+x+1)^3}dx[/TEX]
s) [TEX]\int\limits_{ln2}^{ln3}\frac{e^{2x}}{e^x-1+\sqrt{e^x-2}}dx[/TEX]
t) [TEX]\int\limits_{0}^{\frac{pi}{3}}\frac{x+sin^2x}{1+cos2x}dx[/TEX]
u)[TEX]\int\limits_{0}^{3}\frac{2x^2+x-1}{\sqrt{x+1}}dx[/TEX]
v) [TEX]\int\limits_{0}^{1}x^2ln(1+x^2)dx[/TEX]
w) [TEX]\int\limits_{0}^{1}\frac{dx}{\sqrt[5]{(1+x^5)^6}[/TEX]
a) [TEX]\left\{\begin{array}(17-3x)\sqrt{5-x}+(3y-4)\sqrt{4-y}=0\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\end{array}\right[/TEX]
b)[TEX]\left\{\begin{array}4+9.3^{x^2-2y}=(4+9^{x^2-2y}).7^{2y-x^2+2}\\4^x+4=4x+4\sqrt{2y-2x+4}\end{array}\right[/TEX]
c) [TEX]\left\{\begin{array}(y-2)\sqrt{3-2y}-2x(16x^2+1)=0\\16x^2+y^2+2y+2\sqrt{3+8x}=6\end{array}\right[/TEX]
d) [TEX]\left\{\begin{array}log_2\sqrt{x+3}=log_33y\\log_2\sqrt{y+3}=log_33x\end{array}\right[/TEX]
e) [TEX]\left\{\begin{array}x^2+y^2=1\\\sqrt[2011]{x}-\sqrt[2011]{y}=(\sqrt[2012]{y}-\sqrt[2012]{x})(x+y+xy+2013)\end{array}\right[/TEX]
f) [TEX]\left\{\begin{array}xy+\sqrt{2(x^4+y^4)}=1\\x^{2009}y^{2013}+x^{2013}y^{2009}=\frac{2}{3^{2011}}\end{array}\right[/TEX]
2.Tính các tích phân sau:
a) [TEX]\int\limits_{0}^{\frac{\pi}{6}}\frac{sin3x}{cos^2x}dx[/TEX]
b)[TEX]\int\limits_{4}^{8}\frac{\sqrt{x^2-16}}{x}dx[/TEX]
c) [TEX]\int\limits_{1}^{4}\sqrt{\frac{1}{4x}+\frac{\sqrt{x}+e^x}{\sqrt{x}e^{2x}}dx[/TEX]
d) [TEX]\int\limits_{0}^{\frac{\pi}{2}\sqrt[10]{1-cos^5x}.sinx.cos^9xdx[/TEX]
e) [TEX]\int\limits_{ln2}^{ln5}\frac{dx}{(10e^{-x}-1)(\sqrt{e^x-1})}[/TEX]
f) [TEX]\int\limits_{\frac{-1}{2}}^{0}\frac{dx}{1+\sqrt{-x(1+x)}}[/TEX]
g) [TEX]\int\limits_{-1}^{1}\frac{dx}{1+x+x^2+\sqrt{x^4+3x^2+1}}dx[/TEX]
h) [TEX]\int\limits_{2}^{4}\frac{\sqrt{ln(9-x)}}{\sqrt{ln(9-x)}+\sqrt{ln(x+3)}}dx[/TEX]
i) Cho số thực a>ln2. Tính [TEX]J=\int\limits_{a}^{ln10}\frac{e^x}{\sqrt[3]{e^x-2}}dx[/TEX] và từ đó suy ra [TEX]\lim_{a\to ln2}J[/TEX]
k) [TEX]\int\limits_{1}^{e}\frac{(log_2x)^3}{x\sqrt{1+3ln^2x}}dx[/TEX]
l) Cho hàm số: [TEX]f(x)=\frac{a}{(x+1)^3}+bxe^x[/TEX]. Tìm a, b biết: [TEX]f'(0)=22[/TEX] và [TEX]\int\limits_{0}^{1}f(x)dx=5[/TEX]
m) [TEX]\int\limits_{\frac{pi}{6}}^{\frac{pi}{4}}\frac{cos^2x}{sin^3xsin(x+\frac{pi}{4})}dx[/TEX]
n) [TEX]\int\limits_{0}^{\pi^2}\sqrt{x}sin{\sqrt{x}}dx[/TEX]
p) [TEX]\int\limits_{1}^{2}\frac{dx}{x(x^{2012}+1)}dx[/TEX]
q) [TEX]\int\limits_{0}^{3ln2}\frac{dx}{(\sqrt[3]{e^x}+2)^2}[/TEX]
r) [TEX]\int\limits_{1}^{e}\frac{ln^2x+lnx}{(lnx+x+1)^3}dx[/TEX]
s) [TEX]\int\limits_{ln2}^{ln3}\frac{e^{2x}}{e^x-1+\sqrt{e^x-2}}dx[/TEX]
t) [TEX]\int\limits_{0}^{\frac{pi}{3}}\frac{x+sin^2x}{1+cos2x}dx[/TEX]
u)[TEX]\int\limits_{0}^{3}\frac{2x^2+x-1}{\sqrt{x+1}}dx[/TEX]
v) [TEX]\int\limits_{0}^{1}x^2ln(1+x^2)dx[/TEX]
w) [TEX]\int\limits_{0}^{1}\frac{dx}{\sqrt[5]{(1+x^5)^6}[/TEX]
Last edited by a moderator: