[Toán 12] Tính tích phân

D

dien0709

\[I = \int\limits_0^1 {\dfrac{{4x + 1}}{{{{({x^2} - 2x - 3)}^2}}}dx} \]

$f(x)= \dfrac{{4x + 1}}{{{{({x^2} - 2x - 3)}^2}}}= \dfrac {4x+1}{(x+1)^2(x-3)^2}= \dfrac {A}{x+1}+\dfrac {B}{(x+1)^2}+\dfrac {C}{x-3}+\dfrac {D}{(x-3)^2}$

=>$4x+1= A(x+1)(x-3)^2+B(x-3)^2+C(x-3)(x+1)^2+D(x+1)^2$ Đúng $\forall x$.

Cho x=-1=>B=-3/16 , x= 3=>D=13/16 , x=2 và x=3=>A=1/4 , C=1/8.

\Rightarrow $ f(X)=\dfrac{1}{4(x+1)}$-$\dfrac{3}{16(x+1)^2}$+$\dfrac{1}{8(x-3)}$+$\dfrac{13}{16(x-3)^2}$
 
Top Bottom