[tex]I = \int\limits_0^1 {\sqrt[3]{{{{\left( {2 - \frac{x}{2} + \frac{x}{{2 - x}}} \right)}^2}}}} dx[/tex]
[tex]2 - \frac{x}{2} + \frac{x}{{2 - x}} = \frac{{4(2 - x) - x(2 - x) + 2x}}{{2(2 - x)}}[/tex]
[tex] = \frac{{8 - 4x + {x^2}}}{{2(2 - x)}} = \frac{{{{(x - 2)}^2} + 4}}{{ - 2(x - 2)}} = \frac{{2 - x}}{2} + \frac{2}{{2 - x}} \geq 2[/tex]
[tex]\sqrt[3]{{{{\left( {2 - \frac{x}{2} + \frac{x}{{2 - x}}} \right)}^2}}} \geq \sqrt[3]{{{2^2}}} \Rightarrow \sqrt[3]{{{{\left( {2 - \frac{x}{2} + \frac{x}{{2 - x}}} \right)}^2}}} \geq \sqrt[3]{4}[/tex]
[tex] \Rightarrow I \geq \int\limits_0^1 {\sqrt[3]{4}} dx \Rightarrow I \geq \sqrt[3]{4}[/tex]