[Toán 12] Tính nguyên hàm

N

nghgh97

\[\begin{array}{l}
4{\left( {\sin x\cos x} \right)^3} = \frac{{{{\sin }^3}2x}}{2}\\
6\sin 2x\cos 2x = 3\sin 4x\\
- 3{\sin ^3}x\cos x = - \frac{{6\sin 2x - 3\sin 4x}}{8}\\
\sin x{\cos ^3}x = \frac{{2\sin 2x + \sin 4x}}{8}\\
f(x) = {\sin ^3}x.\cos 3x + {\cos ^3}x.\sin x\\
= {\sin ^3}x.\left( {4{{\cos }^3}x - 3\cos x} \right) + {\cos ^3}x.\sin x\\
= 4{\left( {\sin x\cos x} \right)^3} - 3{\sin ^3}x\cos x + {\cos ^3}x.\sin x\\
f(x) = \frac{{{{\sin }^3}2x}}{2} - \frac{{6\sin 2x - 3\sin 4x}}{8} + \frac{{2\sin 2x + \sin 4x}}{8}\\
= \frac{{2{{\sin }^3}2x - 2\sin 2x + \sin 4x}}{4}
\end{array}\]
Bạn làm tiếp nhé.
 
Top Bottom