[Toán 12]Tìm GTLN

V

vivietnam

giup minh voi:
cho x,y t/m:(x+y)*x*y=x2+y2-x*y. hay tim MAX A=1/x3+1/y3
ta có A=[TEX](x^3+y^3)/(xy)^3=(1/x+1/y)^2[/TEX]
mặt khác ta có A=(1/x+1/y)(1/x^2+1/y^2-1/(xy))
\Rightarrow(1/x+1/y)=1/x^2+1/y^2-1/(xy)=(1/x+1/y)^2-3/(xy)\geq(1/x+1/y)^2-3/4.(1/x+1/y)^2
\Rightarrow(1/x+1/y)\geq(1/x+1/y)^2/4\Rightarrow4\geq(1/x+1/y)
\RightarrowA\leq16
vậy max A=16
 
R

rua_it

giup minh voi:
cho x,y t/m: [tex](x+y).x.y=x^2+y^2-x.y[/tex]

hãy tìm [tex]MAX A=\frac{1}{x^3}+\frac{1}{y^3}[/tex]
[tex]A=\frac{(x+y)(x^2+y^2-xy)}{x^3y^3}[/tex]

[tex]\mathrm{=(\frac{x+y}{xy})^2[/tex]

[tex]\mathrm{\Rightarrow \left{\begin{S.P=S^2-3P}\\{S^2-4P \geq 0}\\{S \not = \ 0 }\\{P \not = \0[/tex]

[tex]\mathrm{\Rightarrow \left{\begin{P=\frac{S^2}{S+3}}\\{\left[\begin{S<-3}\\{S \geq 1}[/tex]

[tex]\mathrm{Xet:f(x)=\frac{x+y}{xy} ( x+y \in\ (- \infty ;-3) \bigcup [1;+\infty) ) [/tex]

[tex]\mathrm{f'(x) =\frac{-3}{(x+y)^2}<0[/tex]

[tex]\mathrm{BBT \Rightarrow A \leq 16 \ khi \ x=y=\frac{1}{2} [/tex]
 
Top Bottom