[Toán 12] Tìm giới hạn

V

vivietnam

$$\mathop {\lim }\limits_{x \to 0 } \dfrac{{\ln (1 + \sin 2x) + {e^3}x - \cos 4x}}{{\sin 5x - \sin x}}$$

$\lim\limits_{x\to 0} \dfrac{ln(1+sin2x)+e^{3x}-cos4x}{sin5x-sinx}$
$=\lim\limits_{x\to 0} \dfrac{sin2x+1+3x-cos4x}{2cos3x.sin2x}$
$=\lim\limits_{x\to 0} (\dfrac{1}{2cos3x}+\dfrac{3.2x}{4sin2xcos3x}+ \dfrac{1-cos4x}{2cos3x.sin2x})$
$ =\dfrac{1}{2}+\dfrac{3}{4}+\lim\limits_{x\to 0}\dfrac{2sin^22x}{2cos3xsin2x}$
$=\dfrac{5}{4}+\lim\limits_{x\to 0}\dfrac{2sin2x}{cos3x}$
$=\dfrac{5}{4}$
 
Last edited by a moderator:
Top Bottom