[Toán 12] Tích tích phân: $\int\limits_{-1}^{\sqrt{2}-1}\frac{x-2}{x^2+2x+3}$

H

hjoker11

Last edited by a moderator:
N

nguyenbahiep1

Bài 1: [TEX]\int\limits_{-1}^{\sqrt{2}-1}\frac{x-2}{x^2+2x+3}[/TEX]
Bài 2: [TEX]\int\limits_{0}^{2}\frac{x^2+x}{x^2+4x+4}[/TEX]

[TEX] I = \int_{-1}^{\sqrt{2}-1}( \frac{x+1}{x^2+2x+3} - \frac{3}{(x+1)^2 + (\sqrt{2})^2}) \\ \frac{1}{2}.ln | x^2+2x+3| - 3.\int_{-1}^{\sqrt{2}-1}\frac{dx}{(x+1)^2 + (\sqrt{2})^2} \\ I = \frac{1}{2}.ln | x^2+2x+3| - I_1 \\ I_1 = 3.\int_{-1}^{\sqrt{2}-1}\frac{dx}{(x+1)^2 + (\sqrt{2})^2} \\ x+1 = \sqrt{2}.tant \\ dx = \sqrt{2}.(1+tan^2t)dt\\ \int_{0}^{\frac{\pi}{4}}. \frac{3.\sqrt{2}}{2}dt[/TEX]

câu 2 chia rồi

[tex]x^2+4x+4 = (x+2)^2 [/tex]

[TEX]\int_{}^{}( 1 - \frac{3x+4}{(x+2)^2})dx = \int_{}^{}( 1 - \frac{3(x+2) - 2}{(x+2)^2})dx = \int_{}^{}( 1 - \frac{3}{x+2} + \frac{2}{(x+2)^2})dx[/TEX]
 
Last edited by a moderator:
Top Bottom