[Toán 12] Tích phân?

V

vivietnam

1,$I=\int_{0}^{\dfrac{\pi}{3}} \dfrac{4sinxdx}{(sinx+cosx)^2}$
xét $J=\int_{0}^{\dfrac{\pi}{3}} \dfrac{4cosxdx}{(sinx+cosx)^2}$
ta có
$I+J=\int_{0}^{\dfrac{\pi}{3}} \dfrac{4dx}{sinx+cosx}=\int_{0}^{\dfrac{\pi}{3}} \dfrac{4dx}{\sqrt{2}sin(x+\dfrac{\pi}{4})}=........$
mặt khác
$J-I=\int_{0}^{\dfrac{\pi}{3}} \dfrac{4(cosx-sinx)dx}{(sinx+cosx)^2}=\int_{0}^{\dfrac{\pi}{3}} \dfrac{4d(sinx+cosx)}{(sinx+cosx)^2}=......$
ta có hệ phương trình
$ \begin{cases} I+J=.... \\ J-I=...... \end{cases}$
giải ra là được
 
N

nguyenbahiep1

Giải giúp e 2 bài này
2.[TEX]\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{ sinxsin(x + \frac{\pi}{6})}[/TEX]

[laTEX]\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{ sinxsinx.cos(\frac{\pi}{6}) + sinx.cosx.sin (\frac{\pi}{6})} \\ \\ \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 2\frac{dx}{ \sqrt{3}sin^2x + sinx.cosx} \\ \\ \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 2.\frac{dx}{ cos^2x(\sqrt{3}tan^2x + tanx)} \\ \\ u = tan x \\ \\ \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} 2.\frac{du}{ \sqrt{3}u^2 + u}\\ \\ 2.\int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} (\frac{1}{u}- \frac{\sqrt{3}}{\sqrt{3}.u+1})du[/laTEX]
 
Last edited by a moderator:
V

vivietnam

2
$I=\dfrac{1}{sin(\dfrac{\pi}{6})}\int_{\dfrac{\pi}{6}}^{\dfrac{\pi}{3}} \dfrac{sin((x+\dfrac{\pi}{6})-x)dx}{sinxsin(x+\dfrac{\pi}{6})}$
$I=\dfrac{1}{sin(\dfrac{\pi}{6})}\int_{\dfrac{\pi}{6}}^{\dfrac{\pi}{3}} \dfrac{sinx.cos(x+\dfrac{\pi}{6})-cosx.sin(x+\dfrac{\pi}{6})}{sinxsin(x+\dfrac{\pi}{6})}dx$
$I=\dfrac{1}{sin(\dfrac{\pi}{6})}\int_{\dfrac{\pi}{6}}^{\dfrac{\pi}{3}} (\dfrac{cos(x+\dfrac{\pi}{6})}{sin(x+\dfrac{\pi}{6})}-\dfrac{cosx}{sinx})dx=......$
 
Last edited by a moderator:
Top Bottom