[tex]I=\int\limits_{0}^{\frac{\pi}{2}}\frac{(1+sinx)e^xdx}{1+cosx}[/tex]
đặt
[tex]u=\frac{1+sinx}{1+cosx}\rightarrow du=\frac{(1+sinx+cosx)dx}{(1+cosx)^2}[/tex]
[tex]dv=e^xdx\rightarrow v=e^x[/tex]
[tex]\frac{(1+sinx)e^x}{1+cosx}can(0\rightarrow \frac{\pi}{2})-\int\limits_{0}^{\frac{\pi}{2}}\frac{(1+sinx+cosx)e^xdx}{(1+cosx)^2}[/tex]
[tex]2e^{\frac{\pi}{2}}-\frac{1}{2}-\int\limits_{0}^{\frac{\pi}{2}}\frac{(1+sinx+cosx)e^xdx}{(1+cosx)^2}(*)[/tex]
ta xét tích phân
[tex]I1=\int\limits_{0}^{\frac{\pi}{2}}\frac{(1+sinx+cosx)e^xdx}{(1+cosx)^2}[/tex]
[tex]\int\limits_{0}^{\frac{\pi}{2}}\frac{e^xdx}{(1+cosx)}+\int\limits_{0}^{\frac{\pi}{2}}\frac{sinx.e^xdx}{(1+cosx)^2}=I1,A+I1,B(**)[/tex]
[tex]xet I1,A=\int\limits_{0}^{\frac{\pi}{2}}\frac{e^xdx}{(1+cosx)}[/tex]
đặt
[tex]u=\frac{1}{1+cosx}\rightarrow du=\frac{sinxdx}{(1+cosx)^2}[/tex]
[tex]dv=e^xdx\rightarrow v=e^x[/tex]
khi dó ta có
[tex] I1,A=\frac{e^x}{1+cosx} can 0\rightarrow\frac{\pi}{2}-\int\limits_{0}^{\frac{\pi}{2}}\frac{sinx.e^xdx}{(1+cosx)^2}=e^{\frac{\pi}{2}}-\frac{1}{2}-\int\limits_{0}^{\frac{\pi}{2}}\frac{sinx.e^xdx}{(1+cosx)^2}[/tex]
[tex]e^{\frac{\pi}{2}}-\frac{1}{2}-I1,B[/tex]
thay vào (**)
[tex]I1,A=e^{\frac{\pi}{2}}-\frac{1}{2}-I1,B+I1,B[/tex]
[tex]I1=e^{\frac{\pi}{2}}-\frac{1}{2}[/tex] thay vào(*)[tex]I=2e^{\frac{\pi}{2}}-\frac{1}{2}-e^{\frac{\pi}{2}}+\frac{1}{2}[/tex]
[tex]I=e^{\frac{\pi}{2}}[/tex]