[Toán 12] Tích Phân Luyện Thi

H

huu_nghia0303

Last edited by a moderator:
N

nghgh97

\[{I_1} = \int\limits_0^\pi {\sqrt {1 - \cos 2x} dx} = \int\limits_0^\pi {\sqrt {1 - (1 - 2{{\sin }^2}x)} dx} = \sqrt 2 \int\limits_0^\pi {\left| {\sin x} \right|dx} \]
Tới đây bạn làm tiếp.


\[{I_2} = \int\limits_\pi ^{\frac{{3\pi }}{2}} {\sqrt {1 + \sin 2x} dx} = \int\limits_\pi ^{\frac{{3\pi }}{2}} {\sqrt {({{\sin }^2}x + {{\cos }^2}x) + 2\sin x\cos x} dx} = \int\limits_\pi ^{\frac{{3\pi }}{2}} {\sqrt {{{(\sin x + \cos x)}^2}} dx} = \int\limits_\pi ^{\frac{{3\pi }}{2}} {\left| {\sin x + \cos x} \right|dx} \]
Tới đây bạn tự làm tiếp.


\[\begin{array}{l}
{I_3} = \int\limits_0^{\frac{\pi }{2}} {\cos 2x({{\sin }^4}x + {{\cos }^4}x)dx} \\
{\sin ^4}x + {\cos ^4}x = {\left( {1 - {{\cos }^2}x} \right)^2} + {\left( {{{\cos }^2}x} \right)^2} = 1 - 2{\cos ^2}x + 2{\cos ^4}x\\
A = \cos 2x({\sin ^4}x + {\cos ^4}x) = \left( {2{{\cos }^2}x - 1} \right)\left( {1 - 2{{\cos }^2}x + 2{{\cos }^4}x} \right)\\
A = 4{\cos ^6}x - 6{\cos ^4}x + 4{\cos ^2}x - 1\\
{I_3} = \int\limits_0^{\frac{\pi }{2}} {\left( {4{{\cos }^6}x - 6{{\cos }^4}x + 4{{\cos }^2}x - 1} \right)dx}
\end{array}\]
Bạn làm tiếp nhé.
 
Last edited by a moderator:
V

vivietnam

$\int_0^{\pi} \sqrt{1-cos2x}dx=\int_0^{\pi}\sqrt{2sin^2x}dx=\sqrt{2}\int_0^{\pi}|sinx|dx=\sqrt{2}\int_0^{\pi}sinxdx=-\sqrt{2}cosx|_0^{\pi}=....$
$\int_0^{\dfrac{\pi}{2}} cos2x(1-\dfrac{sin^22x}{2})dx=\int_0^{\dfrac{\pi}{2}} (cos2x-\dfrac{sin^22x}{2}.cos2x)dx=(\dfrac{sin2x}{2}-\dfrac{sin^32x}{12})|_0^{\dfrac{\pi}{2}}=....$
 
Last edited by a moderator:
Top Bottom